Ecological site R010XY023ID Meadow DECA18-CANE2 Last updated: 9/23/2020 Accessed: 04/28/2024 #### General information **Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. ## **Associated sites** | R010XY024ID | Dry Meadow PONE3-PHAL2 | |-------------|-------------------------| | R010XY029ID | Wet Meadow Carex-Juncus | | R025XY028ID | LOAMY BOTTOM 12-16 | #### Similar sites | R010XY029ID | Wet Meadow Carex-Juncus | |-------------|-------------------------| | R010XY024ID | Dry Meadow PONE3-PHAL2 | Table 1. Dominant plant species | Tree | Not specified | |------------|---------------| | Shrub | Not specified | | Herbaceous | Not specified | ## Physiographic features This site generally occurs on gently sloping to nearly level stream valleys and high mountain valleys on flood plains with slopes of 0 to 4 percent. It also occurs around localized seeps and springs. This site is frequently criss-crossed by old stream courses, oxbows and potholes. The surface is generally not flat, but slightly undulating with small depressions and high spots. Elevation ranges between 2000-5000 feet (610-1524 meters). Table 2. Representative physiographic features | Landforms | (1) Flood plain(2) Valley floor(3) Stream terrace | |--------------------|---| | Flooding duration | Very long (more than 30 days) | | Flooding frequency | None to frequent | | Ponding duration | Very brief (4 to 48 hours) to brief (2 to 7 days) | | Ponding frequency | None to occasional | | Elevation | 610–1,524 m | | Slope | 0–4% | | Ponding depth | 5–15 cm | | Water table depth | 0–51 cm | #### Climatic features The elevation of MLRA 10 ranges from 1791 feet to 9236 feet, with a mean of 4602 feet. Overall, elevation increases from west to east. However, average annual precipitation decreases from west to east, ranging from 16.59 inches to 22.17 inches, with a mean of 19.56 inches, based on 7 long term climate stations throughout the MLRA. In general, precipitation peaks in December and January, with a steady decline to a low in July and August, then a steep increase during the autumn months. Most of the winter precipitation falls as snow, and maximum annual snowfalls of up to 82 inches have been recorded. There is considerable variation in temperature throughout the year. Temperatures as low as -52° Fahrenheit and as high as 117° Fahrenheit are on record. Some areas have recorded the occurrence of more than 50 days with temperatures above 90° Fahrenheit. The average maximum annual temperature is 63 degrees F, while the average minimum temperature is 36.2 degrees F.The frost-free period can range from 128 to 152 days, while the freeze-free period can be from 164 to 189 days. Both the average morning and average afternoon relative humidity values are lowest in July and August, and are below the national average. The number of clear, sunny days peaks during this same period, and is higher then the national average. During the Spring and Summer months high-intensity convective thunderstorms are not unusual. Table 3. Representative climatic features | Frost-free period (average) | 152 days | |-------------------------------|----------| | Freeze-free period (average) | 189 days | | Precipitation total (average) | 559 mm | Figure 1. Monthly precipitation range Figure 2. Monthly average minimum and maximum temperature ## Influencing water features #### Soil features The soils on this site are very deep, very poorly to somewhat poorly drained, with slow to moderately rapid permeability (the water table is at or near the surface at the beginning of the growing season moving down to a depth of 20-40 inches by the end of the growing season). Runoff is low to very high. The erosion hazard is slight, however, the peaty and high organic soils tend to hummock severely from trampling. These soils are susceptible to gully formation which intercepts normal overflow patterns and results in site degradation. The available water capacity is very low to very high and is supplemented by upward capillary movement from the shallow water table. The effective rooting depth is limited by the water table. The surface textures are mainly clays, clay loams, or silty clay loams over 20 inches (50 cm.) and may be somewhat stony or gravelly. The soils range from slightly alkaline to slightly acid in pH. Flooding occurs occasionally during snowmelt and just after snowmelt. Ponding can occur in small depressional areas during this time period. The plant community is dependent on nearly saturated soils during a major portion of the growing season. The water table is influenced by seasonal flooding, stream flows, seeps or springs or from run-on from adjacent sites. Soil characteristics, flooding and water table can vary across the complex of meadow sites. These soils are characterized by an aquic soil moisture regime. Soil temperature regime is mesic and frigid. Soil Series Correlated to this Ecological Site - Bickett Black Canyon Catherine Chance Hapur Marshdale ## **Ecological dynamics** The dominant visual aspect of this site is grass and sedges with scattered forbs and shrubs. The dominant plant community has tufted hairgrass, Nebraska sedge and other Carex species as major components. The site usually occurs within a complex of wetland sites. The soil surface of the site is typically slightly undulating causing small depressions and high spots with variable soil moisture characteristics. The plant communities found on these areas are sites within the complex. The dominant species in these included plant communities are as follows: - 1. Marsh site. Deeper depression areas with water slightly above the surface may have cattails, bulrush and Carex spp. - 2. Wet Meadow site. Shallow depression areas with the water table at or near the surface for the entire growing season are co-dominated by Carex spp. and Junus spp. - 3. Dry Meadow site. This is the slightly higher areas that are drier during the growing season. May have Nevada bluegrass, meadow barley, streambank wheatgrass, basin wildrye and some rushes. Composition by weight is 80-90 percent grasses and grass-like, 5-15 percent forbs and 0-10 percent shrubs. The depression plant communities may have sedges and rushes species making up nearly 100 percent of the community and are inclusions. In the last few thousand years, this site has evolved in an arid climate characterized by dry summers and cold, wet winters. The site has evolved on deep alluvial soils that are saturated to the surface in the beginning of the growing season to about 20 – 40 inches at the end of the growing season. Herbivory has historically occurred on this site at low levels of utilization. Herbivores include pronghorn antelope, mule deer, moose and Rocky Mountain elk. Fire has had little influence on the development of the site. Rare wildfires can occur following consecutive drought years. The conditions for the plant community of this site are highly variable due to a wide variation of soils, flooding frequency and duration, water table fluctuations, air and soil temperatures, and competition between plants that are mostly rhizomatous. These conditions can vary within the site at a given location. At any one point within the site, one species can occupy nearly 100 percent of a small area. At another point nearby, it may have another species fully occupying that area. Due to these situations, the plant community in this ESD is written broadly. The soils within any complex of meadow sites are highly variable. Factors that affect the determination of the site include depth to water table at end of growing season, micro-topography and drainage class. Depth to water table and micro-topography are measurable features. Determination of drainage class requires the use of soil interpretation tables. Other interpretive factors that may be used for site determination are depth and duration of ponding frequency and the timing and duration of flooding frequency. Micro-topography is a feature that has a dramatic effect on depth to water table and the resulting plant communities. A few inches of change in surface elevation changes species composition and/ or production. Slightly undulating topography is common in meadow complexes, therefore, more than one site should be expected. An infinite number of combinations of factors that influence the ecology of potential plant communities exist. For practical purposes, four plant communities where the depth to the water table drives the vegetative composition of each plant community have been described. They are: - Dry meadow Water table at >40" depth at end of growing season - Meadow Water table at 20-40" depth at end of growing season - Wet meadow Water table at 10-20" depth at end of growing season - Marsh Water at surface to <10" depth at end of growing season Most wetland species have a wide range of tolerance for variations in soil moisture. Most species occur in more than one site, although most are dominant on just one site. The following table shows the amplitude of wetland species that occur on the four sites. The Reference State (State 1) moves through many phases depending on the natural and man-made forces that impact the community over time. State 1, described later, indicates some of these phases. The Reference Plant Community Phase is Phase A. This plant community is dominated by tufted hairgrass and Nebraska sedge. There are a wide variety of grasses and grass-like species and forbs that may occur in minor amounts. Some of these species may be dominant in small areas due to soil and water variations as stated in "Ecological Dynamics of the site". Willows and shrubby cinquefoil can occur in small amounts. The plant species composition of Phase A is listed later under "Reference Plant Community Phase Plant Species Composition". The total annual production is 3600 pounds per acre (4032 kilograms per hectare) in a normal year. Production in a favorable year is 4500 pounds per acre (5040 kilograms per hectare). Production in an unfavorable year is 2500 pounds per acre (2800 kilograms per hectare). Structurally, cool season deep-rooted perennial grasses and sedges are very dominant, followed by perennial forbs being more dominant than shrubs. This site is suitable for big game and livestock grazing in the late spring, summer and fall. Wet soils can limit grazing opportunities, particularly early in the year. This site can be used for hiking, access to fishing, hunting, viewing wildlife and plants, and horseback riding. The wet soils can limit access. Motorized vehicles can be very detrimental to the site especially when soils are saturated at or near the surface. Due to the deep soils, fertility, inherent high productivity of the site, rhizomatous plants, and relatively flat slopes, it is fairly resistant to disturbances that can potentially degrade the site. Site degradation usually occurs as a result of lowering of the water table. This can occur with down cutting of adjacent stream channels or significant run-off following prolonged drought. This can result from on-site improper grazing or off-site conditions in the upper watershed. Once adjacent streams down-cut, concentrated flows lower the water table. Impacts on the Plant Community: #### Influence of fire: This site usually does not burn from wildfire. If a fire occurs, it usually does not adversely affect the plant community. With sufficient moisture, most plants, including shrubs, sprout back during the next growing season. Influence of improper grazing management: Season-long grazing and excessive utilization can be very detrimental to this site. The grasses in the plant community will decline in the stand and sedges, rushes, and forbs will increase. Continued improper grazing management will result in a stand of forbs and Kentucky bluegrass with sedges and rushes. The reduced ability of the community to withstand seasonal flooding results from continued improper grazing management and/or the potential down cutting of adjacent streams. If downcutting or the initiation of headcuts occurs, both will lower the water table and thus reduce the potential of the site. Proper grazing management that addresses frequency, duration, and intensity of grazing can maintain the integrity of the plant community and the water table on which it is dependent. #### Weather influences: Because of the deep soils, the influence of the water table, seasonal flooding and run-on, the production of this site changes little during wet or dry precipitation years. The overall plant production can be adversely influenced with prolonged drought. Overall plant composition is normally not affected when perennials have good vigor. Below normal temperatures in the spring can have an adverse impact on total production regardless of precipitation. An early, hard freeze can occasionally kill some plants. #### Influence of Insects and disease: Periodic disease and insect outbreaks can affect vegetation health. Mormon cricket and grasshopper outbreaks occur periodically. Outbreaks seldom cause plant mortality since defoliation of the plant occurs only once during the year of the outbreak. An outbreak of a particular insect is usually influenced by weather but no specific data for this site is available. Influence of noxious and invasive plants: Annual and perennial invasive species can compete with desirable plants for moisture and nutrients. The result is reduced production and change in composition of the plant community. The plants of the Historic Climax Plant Community on this site are very competitive against potentially invasive plants. ### Influence of wildlife: This site is important for many species of mammals for food and life cycles. The site is primarily used in the late spring, summer, and fall by big game. Many birds use the site for food, nesting or brood raising in the late spring, summer, and fall. Sage grouse use the site for brood rearing and forage. Total numbers are seldom high enough to adversely affect the plant community. #### Watershed: The largest threat to degradation of this site is the lowering of the water table. Off-site conditions can affect the gradient of adjacent stream channels that can affect the water table. If the perennial grass and sedge cover is depleted, down cutting can be accelerated within the site. High run-off events from the adjacent uplands can severely damage or change the normal stream channel on the site. As the water table is lowered, productive potential is lost. Eventually the water table is below the root zone of the adapted perennial grasses and grass-like sedges and rushes. These are ultimately replaced by perennial forbs and shallow rooted grasses. Extreme down cutting and lowering of the water table can move the site across the threshold to a new, less productive site. Severe down-cutting can result in a plant community that resembles an upland site. Plant Community and Sequence: Transition pathways between common vegetation states and phases: State 1. Phase A to B. Develops with improper grazing management. Phase B to A. Results from prescribed grazing. State 1 Phase A or B to State 2. Develops through permanently lowering the late growing season water table to >40 inches. This can occur with continued improper grazing management. It may also occur with proper grazing on the site, but channel erosion may continue if poor off-site conditions cause frequent and/or severe flooding. State 2 to unknown site. Results from permanently losing the water table in the soil profile through down cutting of the stream channel. The site retrogresses to a new site with reduced potential due to significant loss of available soil moisture from the lowered water table. It occurs with continued improper grazing management or repeated significant run-off events. #### **Practice Limitations:** There are moderate to severe seeding limitations on this site due to difficulty in preparing an adequate seedbed. Elimination of existing vegetation prior to planting is difficult in wet seasons and high water table periods. Grade stabilization structures may be needed to prevent further down-cutting of the channel. Other options for rehabilitation may include application of fertilizer, prescribed grazing and off-site livestock water development. Fencing of the site for better livestock control may also be considered. ### State and transition model ## Plant Legend States 1 & 2 DECA18 - Tufted Hairgrass CANE2 - Nebraska Sedge CAREX - Sedges JUBA - Baltic Rush POPR - Kentucky Bluegrass State 1 State 1 Phase A ## Community 1.1 State 1 Phase A This plant community has tufted hairgrass and Nebraska sedge as co-dominant in the herbaceous layer. There are a wide variety of grasses and grass-like species and forbs that may occur in minor amounts. Some of these species may be dominant in small areas due to soil and water variations as stated in "Ecological Dynamics of the Site". Willows and shrubby cinquefoil can occur in small amounts. Table 4. Ground cover | Tree foliar cover | 0% | |-------------------------------|----| | Shrub/vine/liana foliar cover | 0% | | Grass/grasslike foliar cover | 0% | | Forb foliar cover | 0% | | Non-vascular plants | 0% | | Biological crusts | 0% | |-----------------------------------|--------| | Litter | 90-95% | | Surface fragments >0.25" and <=3" | 0% | | Surface fragments >3" | 0% | | Bedrock | 0% | | Water | 0% | | Bare ground | 0% | Figure 3. Plant community growth curve (percent production by month). ID0214, Wet Meadow. State 1, HCPC. ## State 2 State 1 Phase B ## Community 2.1 State 1 Phase B This plant community is dominated by Nebraska sedge and other sedges and Baltic rush. Forbs have increased in the community and Kentucky bluegrass may have invaded. This phase has developed due to improper grazing management. The water table has not been lowered from that of Phase A. Table 5. Ground cover | Tree foliar cover | 0% | |-----------------------------------|--------| | Shrub/vine/liana foliar cover | 0% | | Grass/grasslike foliar cover | 0% | | Forb foliar cover | 0% | | Non-vascular plants | 0% | | Biological crusts | 0% | | Litter | 90-95% | | Surface fragments >0.25" and <=3" | 0% | | Surface fragments >3" | 0% | | Bedrock | 0% | | Water | 0% | | Bare ground | 0% | Figure 4. Plant community growth curve (percent production by month). ID0214, Wet Meadow. State 1, HCPC. ## State 3 State 2 ## Community 3.1 State 2 This plant community is dominated by Nebraska sedge and other sedges and Baltic rush but the overall production potential of the site is much lower than State 1. There is an increase in forbs and grasses that require less soil moisture. Kentucky bluegrass, redtop bentgrass and meadow foxtail may have invaded the community. This state developed due to continued improper grazing management and a permanent lowering of the water table from 20-40 inches to > 40 inches below the surface. This state can be similar to Dry Meadow in early seral state. The site has crossed the threshold. This state cannot be returned to State 1 without raising the water table. This might be done over time using structures or bio-engineering practices, but the plant community may take many years to approach the plant community in State 1. Table 6. Ground cover | Tree foliar cover | 0% | |---|--------------| | Shrub/vine/liana foliar cover | 0% | | Grass/grasslike foliar cover | 0% | | Forb foliar cover | 0% | | Non-vascular plants | 0% | | Biological crusts | 0% | | | | | Litter | 90-95% | | Litter Surface fragments >0.25" and <=3" | 90-95%
0% | | | | | Surface fragments >0.25" and <=3" | 0% | | Surface fragments >0.25" and <=3" Surface fragments >3" | 0% | Figure 5. Plant community growth curve (percent production by month). ID0215, B10 Dry Meadow. State 1. State 4 State 3 ## Community 4.1 State 3 Table 7. Ground cover | Tree foliar cover | 0% | |-----------------------------------|--------| | Shrub/vine/liana foliar cover | 0% | | Grass/grasslike foliar cover | 0% | | Forb foliar cover | 0% | | Non-vascular plants | 0% | | Biological crusts | 0% | | Litter | 90-95% | | Surface fragments >0.25" and <=3" | 0% | | Surface fragments >3" | 0% | | Bedrock | 0% | | Water | 0% | | Bare ground | 0% | ## **Additional community tables** ## **Animal community** Wildlife Interpretations. Animal Community - Wildlife Interpretations This meadow ecological site provides diverse habitat value for wetland and upland wildlife species. The hydrology of the site results in abundant forage and seasonal water attracting invertebrate and vertebrate animals. Important seasonal habitat is provided for over 80% of adjacent rangeland resident and migratory animals including western toad, western rattlesnake, shrews, bats, jackrabbits, ground squirrels, mice, coyote, red fox, badger, sage-grouse, Ferruginous hawk, prairie falcon, horned lark and western meadowlark. Large herbivore use of this ecological site includes mule deer, pronghorn antelope and elk. Native reptiles and amphibians are reliant on these meadow sites throughout the year. Loss of site hydrology significantly reduces habitat value of the adjacent ecological sites. Open water is seasonal, only being provided by seasonal runoff, ponding, seasonal high water table and natural springs. State 1 Phase 1.1 –Tufted Haigrass/ Nebraska Sedge Reference Plant Community (RPC): The RPC provides a diversity of grasses and forbs used by native insect communities who assist in pollination of the plant community. The insects provide feed for the many predator species utilizing the site. The reptile and amphibian community is represented by leopard lizard, western skink, rubber boa, western rattlesnake, western toad, boreal chorus frog and northern leopard frog. A diverse amphibian population is a key indicator of good ecological health on this site. Sage-grouse utilize the meadows as summer and fall brood-rearing habitat. Isolated patches of woody vegetation add horizontal and vertical structure for nesting and roosting sites for resident and migratory avian species. Bird species can include warbling vireo, black-capped chickadee, MacGillivray's warbler, fox sparrow, song sparrow and long-billed curlew. The dominant plant community is preferred forage for the ungulates utilizing the site. Limited thermal cover for ungulates is provided with isolated patches of woody vegetation within the plant community. A diverse small mammal population including deer mouse, montane vole and western jumping mouse would utilize the habitat on a seasonal basis. State 1 Phase 1.2- Nebraska Sedge/ Sedges/ Baltic Rush/ Forbs/ Kentucky Bluegrass Plant Community: The plant community is the result of improper grazing management. Under reasonable grazing management insect diversity and populations would be similar to the reference plant community. With the hydrologic conditions similar to Phase 1.1, amphibian habitat would be available and prey species would be abundant. Improper grazing management would reduce the habitat cover value for reptiles and amphibians. The plant community provides summer and fall brood-rearing habitat for sage-grouse when sagebrush cover is nearby. Large mammal (antelope, mule deer and elk) use would be seasonal. The dominant plant community provides reduced amounts of quality forage for ungulates. Small mammal populations and diversity would be reduced due to less vertical structure and increasing vulnerability to predators. State 2 – Nebraska Sedge/ Sedges/ Baltic Rush/Forbs/Grasses Plant Community: This state developed due to continued improper grazing management and a permanent lowering of the water table. Loss of historic hydrology has reduced the habitat value for many animals present in State 1. Pollinators would be supported by forbs requiring less moisture than plants in State 1. The loss of historic hydrology will limit or exclude use of the site by amphibians and many reptiles. Suitable habitat cover for the northern leopard frog, a species of concern, would not be provided. With improper grazing management the loss of vertical and horizontal structure would reduce diversity and populations of all species of birds. The site would be more suitable for killdeers, western meadowlark and horned larks. Birds of prey (northern harrier and Cooper's hawk) may range throughout these areas looking for prey species. With improper grazing management forage for ungulates would be available for a shorter duration in the summer and fall. Small mammal populations and diversity would be reduced under an improper grazing management scenario that reduces vertical structure and increases vulnerability to predators. #### Grazing Interpretations. This site is best suited for livestock grazing in the late spring, summer and fall. Wet soils can limit grazing opportunities, particularly in the late spring. Estimated initial stocking rate will be determined with the landowner or decision-maker. They will be based on the inventory, past use history and type, condition of vegetation, production, season of use and seasonal preference. Calculations used to determine estimated initial stocking rate will be based on forage preference ratings. ## **Hydrological functions** Soils in this site are generally grouped in hydrologic group D. When hydrologic condition of the vegetative cover is good, natural erosion hazard is slight. ## Recreational uses This site presents an aesthetically pleasing view of lush vegetation consisting primarily of grasses and grass-like plants. When livestock or big game are grazing or browsing on the site it presents a pleasant pastoral panorama. Hikers and fisherman often traverse the edges of this site. Picnickers and campers frequent the site in late summer and early fall as sometime adjacent shaded wooded areas become less pleasant on cool days. Vehicular use can be very detrimental to this site, especially during wet weather and high water table conditions. ## **Wood products** None ## Other products None ## Inventory data references Information presented here has been derived from NRCS clipping and other inventory data. Also, field knowledge of range-trained personnel was used. Those involved in developing this site description include: Dave Franzen, co-owner, Intermountain Rangeland Consultants, LLC Jacy Gibbs, co-owner, Intermountain Rangeland Consultants, LLC Jim Cornwell, Rangeland Management Specialist, IASCD Dan Ogle, Plant Materials Specialist, NRCS, Idaho Chris Hoag, Wetland Plant Ecologist, NRCS, Idaho Brendan Brazee, State Rangeland Management Specialist, NRCS, Idaho Leah Juarros, Resource Soil Scientist, NRCS, Idaho Lee Brooks, Range Management Specialist, IASCD #### Other references USDA, NRCS.2001. The PLANTS Database, Version 3.1 (http://plants.usda.gov.) National Plant Data Center, Baton Rouge, LA 70874-4490 USA USDA NRCS. 1992. Major Land Resource Area, Owyhee High Plateau, Range Site Descriptions. Reno, Nevada. USDA NRCS. Major Land Resource Area, Owyhee High Plateau, Range Site Descriptions. Portland, Oregon. USDA, Forest Service. 2004. (www.fs.fed.us/database/feis/plants.). USDI Bureau of Land Management, US Geological Survey; USDA Natural Resources Conservation Service, Agricultural Research Service; Interpreting Indicators of Rangeland Health. Technical Reference 1734-6; version 4-2005. ## **Approval** Kendra Moseley, 9/23/2020 ### Rangeland health reference sheet Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site. | Author(s)/participant(s) | Dave Franzen and Jacy Gibbs Intermountain Range Consultants 17700 Fargo Rd. Wilder, ID 83676 | |---|--| | Contact for lead author | Brendan Brazee, State Rangeland Management Specialist USDA-NRCS 9173 W. Barnes Drive, Suite C, Boise, ID 83709 | | Date | 03/24/2008 | | Approved by | Kendra Moseley | | Approval date | | | Composition (Indicators 10 and 12) based on | Annual Production | # 1. Number and extent of rills: do not occur on this site. 2. Presence of water flow patterns: water flows over and through the plant community. Rarely are flows detrimental to the plants. The plants have adapted or evolved with this occurrence. 3. Number and height of erosional pedestals or terracettes: do not occur on this site. Some plants may be hummocked due to trampling damage. 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): data is not available. On sites in mid-seral status bare ground may range from 2-10 percent. 5. Number of gullies and erosion associated with gullies: None 6. Extent of wind scoured, blowouts and/or depositional areas: do not occur. 7. Amount of litter movement (describe size and distance expected to travel): fine litter in the interspaces may move 6 feet or more due to seasonal flooding. Litter accumulates on the surface. There is little or no coarse litter developed on the site. Any coarse litter present, may be removed from the site following seasonal flooding. 8. Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Values should range from 4 to 6 but needs to be tested. 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): The A or A1 horizon is typically 4 to 33 inches thick. Structure ranges from weak fine granular to strong medium subangular blocky. Soil organic matter (SOM) ranges from 2 to 85 percent. 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: deep rooted perennial grasses and sedges slow run-off and increase infiltration. The total vegetation cover should be >60 percent to optimize infiltration. The plant community does not depend on water infiltration alone, but on the water table. The water table controls rooting depth. 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be livestock going to and from water or from long-term repetitive heavy grazing. mistaken for compaction on this site): not present. Compaction layers can develop under stock trails made by **Indicators** | 12. | Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): | |-----|--| | | Dominant: deep rooted perennial grasses and sedges. | | | Sub-dominant: perennial forbs. | | | Other: | | | Additional: | | 13. | Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): normal mortality of grass and grass-like is slow and occurs as aging plants. This will go unnoticed due to regeneration from roots, seeds or other new plants filling the spaces. | | 14. | Average percent litter cover (%) and depth (in): additional litter cover data is needed but is expected to be 45-60 percent to a depth of 0.5-1.5 inches. Litter accumulates on the soil surface | | 15. | Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): is 3600 pounds per acre (4032 Kg/ha) in a year with normal precipitation and temperatures. Perennial grasses and sedges produce 80-90 percent of the total production, forbs 5-15 percent and shrubs 0-10 percent. | | 16. | Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: include whitetop, Leafy spurge, Dock, Canadian thistle, reed canarygrass, foxtail barley, perennial pepperweed and teasel. Other invasive species may include meadow foxtail, redtop and Kentucky bluegrass | | 17. | Perennial plant reproductive capability: all functional groups have the potential to reproduce in most years. Many of the plants reproduce vegetatively | | | |