

Ecological site R025XY023NV GRAVELLY CLAYPAN 12-16 P.Z.

Last updated: 4/25/2024 Accessed: 05/05/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 025X-Owyhee High Plateau

MLRA Notes 25—Owyhee High Plateau

This area is in Nevada (56 percent), Idaho (30 percent), Oregon (12 percent), and Utah (2 percent). It makes up about 27,443 square miles. MLRA 25 is characteristically cooler and wetter than the neighboring MLRAs of the Great Basin. The western boundary is marked by a gradual transition to the lower and warmer basins of MLRA 24. The boundary to the south-southeast, with MLRA 28B, is marked by gradual changes in geology marked by an increased dominance of singleleaf pinyon and Utah juniper and a reduced presence of Idaho fescue. The boundary to the north, with MLRA 11, is a rapid transition from the lava plateau topography to the lower elevation Snake River Plain.

Physiography:

All of this area lies within the Intermontane Plateaus. The southern half is in the Great Basin section of the Basin and Range province. This part of the MLRA is characterized by isolated, uplifted fault-block mountain ranges separated by narrow, aggraded desert plains. This geologically older terrain has been dissected by numerous streams draining to the Humboldt River.

The northern half of the area lies within the Columbia Plateaus province. This part of the MLRA forms the southern boundary of the extensive Columbia Plateau basalt flows. Most of the northern half is in the Payette section, but the northeast corner is in the Snake River Plain section. Deep, narrow canyons draining into the Snake River have been incised into this broad basalt plain. Elevation ranges from 3,000 to 7,550 feet on rolling plateaus and in gently sloping basins. It is more than 9,840 feet on some steep mountains. The Humboldt River crosses the southern half of this area

Geology:

The dominant rock types in this MLRA are volcanic. They include andesite, basalt, tuff, and rhyolite. In the north and west parts of the area, Cretaceous granitic rocks are exposed among Miocene volcanic rocks in mountains. A Mesozoic igneous and metamorphic rock complex dominates the south and east parts of the area. Upper and Lower Paleozoic calcareous sediments, including oceanic deposits, are exposed with limited extent in the mountains. Alluvial fan and basin fill sediments occur in the valleys.

Climate:

The average annual precipitation in most of this area is typically 11 to 22 inches. It increases to as much as 49 inches at the higher elevations. Rainfall occurs in spring and sporadically in summer. Precipitation occurs mainly as snow in winter. The precipitation is distributed fairly evenly throughout fall, winter, and spring. The amount of precipitation is lowest from midsummer to early autumn. The average annual temperature is 33 to 51 degrees F. The freeze-free period averages 130 days and ranges from 65 to 190 days, decreasing in length with elevation. It is typically less than 70 days in the mountains.

Water:

The supply of water from precipitation and streamflow is small and unreliable, except along the Owyhee, Bruneau, and Humboldt Rivers. Streamflow depends largely on accumulated snow in the mountains. Surface water from mountain runoff is generally of excellent quality and suitable for all uses. The basin fill sediments in the narrow alluvial valleys between the mountain ranges provide some ground water for irrigation. The alluvial deposits along the large streams have the most ground water. Based on measurements of water quality in similar deposits in

adjacent areas, the basin fill deposits probably contain moderately hard water. The water is suitable for almost all uses. The carbonate rocks in this area are considered aquifers, but they are little used. Springs are common along the edges of the limestone outcrops.

Soils:

The dominant soil orders in this MLRA are Aridisols and Mollisols. The soils in the area dominantly have a mesic or frigid temperature regime and an aridic, aridic bordering on xeric, or xeric moisture regime. Soils with aquic moisture regimes are limited to drainage or spring areas, where moisture originates or runs on and through. These soils are of a very limited extent throughout the MLRA. They generally are well drained, clayey or loamy, and shallow or moderately deep. Most of the soils formed in mixed parent material. Volcanic ash and loess mantle the landscape. Surface soil textures are loam and silt loam with ashy texture modifiers in some areas. Argillic horizons occur on the more stable landforms. They are exposed nearer the soil surface on convex landforms, where ash and loess deposits are more likely to erode. Soils that formed in carbonatic parent material in areas that receive less than 12 inches of precipitation are characterized by calcic horizons throughout the profile, while soils in areas that receive more than 12 inches of precipitation do not have calcic horizons in the upper part of the profile. Soils that formed on stable landforms at the lower elevations are dominated by ochric horizons. Soils that formed at the middle and upper elevations are characterized by mollic epipedons. Soils in drainage areas at all elevations that receive moisture running on or through them are characterized by thicker mollic epipedons. Biological Resources:

This MLRA supports shrub-grass vegetation. Lower elevations are characterized by Wyoming big sagebrush associated with bluebunch wheatgrass, western wheatgrass, and Thurber's needlegrass. Other important plants include bluegrass, squirreltail, penstemon, phlox, milkvetch, lupine, Indian paintbrush, aster, and rabbitbrush. Black sagebrush occurs but is less extensive. Singleleaf pinyon and Utah juniper occur in limited areas. With increasing elevation and precipitation, vast areas characterized by mountain big sagebrush or low sagebrush/early sagebrush in association with Idaho fescue, bluebunch wheatgrass, needlegrasses, and bluegrass become common. Snowberry, curl-leaf mountain mahogany, ceanothus, and juniper also occur. Mountains at the highest elevations support whitebark pine, Douglas-fir, limber pine, Engelmann spruce, subalpine fir, aspen, and curl-leaf mountain mahogany.

Major wildlife species include mule deer, bighorn sheep, pronghorn, mountain lion, coyote, bobcat, badger, river otter, mink, weasel, golden eagle, red-tailed hawk, ferruginous hawk, Swainson's hawk, northern harrier, prairie falcon, kestrel, great horned owl, short-eared owl, long-eared owl, burrowing owl, pheasant, sage grouse, chukar, gray partridge, and California quail. Reptiles and amphibians include western racer, gopher snake, western rattlesnake, side-blotched lizard, western toad, and spotted frog. Fish species include bull, red band, and rainbow trout.

Ecological site concept

This site is on mountain side slopes and upper piedmont slopes of all aspects. Slopes range from 8 to 50 percent, but slope gradients of 15 to 30 percent are most typical. Elevations range from 6,200 to 7,600 feet (1,890 to 2,316 meters).

The soils associated with this site are generally deep to very deep although the effective rooting depth is limited due to a heavy textured subsoil. They normally have from 0 to 35 percent gravels and cobbles by volume distributed throughout their profile and high amounts of gravels and/or cobbles on the surface. Permeability is slow and the soils are well drained. Available water holding capacity is low.

The representative plant community is dominated by antelope bitterbrush, bluebunch wheatgrass and low sagebrush. Antelope bitterbrush dominates the visual aspect.

Associated sites

R025XY007NV	GRAVELLY LOAM 12-16 P.Z.	
R025XY012NV	LOAMY SLOPE 12-16 P.Z.	
R025XY017NV	CLAYPAN 12-16 P.Z.	

Similar sites

R025XY007NV	GRAVELLY LOAM 12-16 P.Z	
	ARAR8 dominant shrub.	

Table 1. Dominant plant species

Tree	Not specified	
Shrub	(1) Artemisia arbuscula	
Herbaceous	(1) Pseudoroegneria spicata	

Physiographic features

This site is on mountain side slopes on all aspects. Slopes range from 8 to 50 percent, but slope gradients of 15 to 30 percent are most typical. Elevations are typically 6,200 to 7,600 feet (1,890 to 2,316 meters).

Table 2. Representative physiographic features

Landforms	(1) Mountain slope
Runoff class	Very high
Flooding frequency	None
Ponding frequency	None
Elevation	6,200–7,600 ft
Slope	15–30%
Water table depth	48 in
Aspect	W, NW, N, NE, E, SE, S, SW

Table 3. Representative physiographic features (actual ranges)

Runoff class	Not specified	
Flooding frequency	Not specified	
Ponding frequency	Not specified	
Elevation	6,200–8,500 ft	
Slope	8–50%	
Water table depth	Not specified	

Climatic features

The climate associated with this site is semiarid, characterized by cold, moist winters and warm, dry summers. Mean annual air temperature is typically more than 45 degrees F.

Mean annual precipitation across the range of the ecological site is 15 inches (38 cm). Frost free days 50 to 90. Freeze free days 40 to 100.

Monthly mean precipitation in inches: January 1.65 (4.19cm); February 1.68 (4.27cm); March 1.98 (5.03cm); April 2.43 (6.17cm); May 2.41 (6.12cm); June 1.62 (4.11cm); July 0.61 (1.55cm); August 0.63 (1.60cm); September 0.84 (2.13cm); October 1.41 (3.58cm); November 1.51 (3.83cm); December 1.79 (4.55cm).

*The above data is averaged from the Jarbridge 4N and Lamoille PH climate stations, NASIS and, Western regional Climate Center.

Table 4. Representative climatic features

Frost-free period (characteristic range)	50-90 days
--	------------

Freeze-free period (characteristic range)	40-100 days
Precipitation total (characteristic range)	13-16 in
Frost-free period (actual range)	50-90 days
Freeze-free period (actual range)	40-100 days
Precipitation total (actual range)	13-23 in
Frost-free period (average)	54 days
Freeze-free period (average)	92 days
Precipitation total (average)	15 in

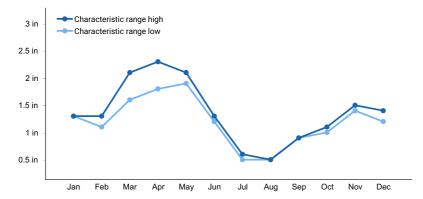


Figure 1. Monthly precipitation range

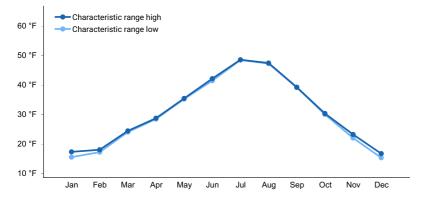


Figure 2. Monthly minimum temperature range

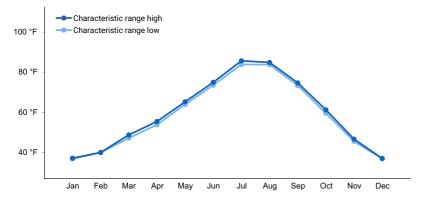


Figure 3. Monthly maximum temperature range

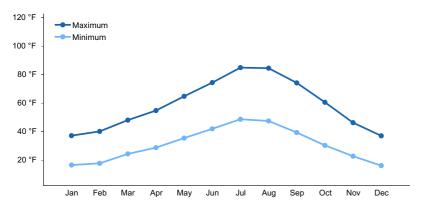


Figure 4. Monthly average minimum and maximum temperature

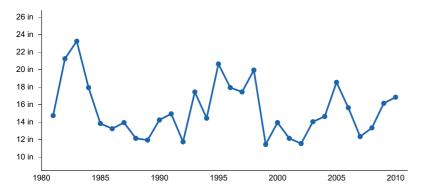


Figure 5. Annual precipitation pattern

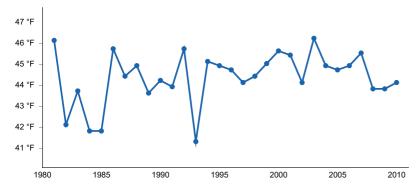


Figure 6. Annual average temperature pattern

Climate stations used

- (1) LAMOILLE YOST [USC00264394], Spring Creek, NV
- (2) JARBIDGE 7 N [USC00264039], Jackpot, NV

Influencing water features

There are no influencing water features associated with this site.

Soil features

The soils associated with this site are generally deep to very deep. Effective rooting depth is limited due to a heavy textured subsoil. They normally have from 0 to over 35 percent gravels and cobbles by volume distributed throughout their profile. Permeability is slow and the soils are well drained. Available water holding capacity is low.

The soils series associated with this site is: Ninemile

A representative soil series associated with this site is Ninemile, classified as a clayey, smectitic, frigid Aridic Lithic Argixeroll. This soil is shallow and well drained, and was formed in residuum and colluvium derived from volcanic

rocks. Reaction is slightly acid through moderately alkaline. Diagnostic horizons include a mollic epipedon that occurs from the soil surface to 8 inches (20cm) and an argillic horizon that occurs from 2 to 14 inches (5 to 36cm). Clay content in the particle-size control section averages 40 to 60 percent. Rock fragments range from 0 to 35 percent, mainly gravel or cobbles. Lithology of fragments are volcanic rocks such as andesite, basalt, rhyolite, or tuff.

Table 5. Representative soil features

Parent material	(1) Residuum (2) Colluvium
Surface texture	(1) Clay loam (2) Loam
Family particle size	(1) Clayey
Drainage class	Well drained
Permeability class	Very slow
Depth to restrictive layer	10–20 in
Soil depth	10–20 in
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0–15%
Available water capacity (0-40in)	2–2.2 in
Calcium carbonate equivalent (0-40in)	0–2%
Electrical conductivity (0-40in)	0–2 mmhos/cm
Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	6.1–7.8
Subsurface fragment volume <=3" (Depth not specified)	5–15%
Subsurface fragment volume >3" (Depth not specified)	0–5%

Ecological dynamics

An ecological site is the product of all the environmental factors responsible for its development and has a set of key characteristics that influence a site's resilience to disturbance and resistance to invasives. Key characteristics include 1) climate (precipitation and temperature), 2) topography (aspect, slope, elevation, and landform), 3) hydrology (infiltration and runoff), 4) soils (depth, texture, structure, and organic matter), 5) plant communities (functional groups and productivity), and 6) natural disturbance regime (fire, herbivory, etc.) (Caudle 2013). Biotic factors that influence resilience include site productivity, species composition and structure, and population regulation and regeneration (Chambers et al. 2013).

This ecological site is dominated by deep-rooted cool season, perennial bunchgrasses and long-lived shrubs (more than 50 years) with high root to shoot ratios. The dominant shrubs usually root to the full depth of the winter-spring soil moisture recharge, which ranges from 1.0 to over 3.0 meters (Dobrowolski et al. 1990). Root length of mature sagebrush plants was measured to a depth of 2 meters in alluvial soils in Utah (Richards and Caldwell 1987). However, community types with low sagebrush as the dominant shrub were found to have soil depths (and thus available rooting depths) of 71 to 81 centimeters in a study in northeast Nevada (Jensen 1990). These shrubs have a flexible generalized root system with development of both deep taproots and laterals near the surface (Comstock and Ehleringer 1992).

Periodic drought regularly influences sagebrush ecosystems and drought duration and severity have increased throughout the 20th century in much of the Intermountain West. Major shifts away from historical precipitation patterns have the greatest potential to alter ecosystem function and productivity. Species composition and productivity can be altered by the timing of precipitation and water availability with the soil profile (Bates et al. 2006).

Low sagebrush is fairly drought tolerant but also tolerates periodic wetness during some portion of the growing season. Low sagebrush is also susceptible to the sagebrush defoliator Aroga moth. Aroga moth can partially or entirely kill individual plants or entire stands of big sagebrush (Furniss and Barr 1975), but the research is inconclusive of the damage sustained by low sagebrush populations.

The perennial bunchgrasses that are dominant on this site includes Idaho fescue and bluebunch wheatgrass. These species generally have shallower root systems than the shrubs, but root densities are often as high as or higher than those of shrubs in the upper 0.5 m but taper off more rapidly. Differences in root depth distributions between grasses and shrubs result in resource partitioning in these shrub/grass systems.

The Great Basin sagebrush communities have high spatial and temporal variability in precipitation both among years and within growing seasons. Nutrient availability is typically low but increases with elevation and closely follows moisture availability. The invasibility of plant communities is often linked to resource availability. Disturbance can decrease resource uptake due to damage or mortality of the native species and depressed competition. It can also increase resource pools via the decomposition of dead plant material following disturbance. The invasion of sagebrush communities by cheatgrass (*Bromus tectorum*) has been linked to disturbances (fire, abusive grazing) that have resulted in fluctuations in resources (Chambers et al. 2007). The introduction of annual weedy species, like cheatgrass, may cause an increase in fire frequency and eventually lead to an annual state. Conversely, as fire frequency decreases, sagebrush will increase and with inappropriate grazing management, the perennial bunchgrasses and forbs may be reduced.

As ecological condition declines, antelope bitterbrush, bluebunch wheatgrass and Idaho fescue will decrease, while low sagebrush, Douglas' rabbitbrush and snowberry increase. Cheatgrass is the species likely to invade.

This ecological site has low to moderate resilience to disturbance and resistance to invasion. Increased resilience increases with elevation, aspect, increased precipitation and increased nutrient availability. Two possible alternative stable states have been identified for this ecological site.

Fire Ecology:

Presettlement fire return intervals for antelope bitterbrush communities range from 15-25 years.

Antelope bitterbrush is moderately fire tolerant (McConnell and Smith 1977). It regenerates by seed and resprouting (Blaisdell and Mueggler 1956, McArthur et al. 1982), though sprouting ability is highly variable and has been attributed to genetics, plant age, phenology, soil moisture and texture, and fire severity (Blaisdell and Mueggler 1956, Blaisdell et al. 1982, Clark et al. 1982, Cook et al. 1994). Bitterbrush sprouts from a region on the stem approximately 1.5 inches above and below the soil surface; the plant rarely sprouts if the root crown is killed by fire (Blaisdell and Mueggler 1956). Low intensity fires may allow for bitterbrush to sprout; however, community response also depends on soil moisture levels at time of fire (Murray 1983). Lower soil moisture allows more charring of the stem below ground level (Blaisdell and Mueggler 1956), thus sprouting will usually be more successful after a spring fire than after a fire in summer or fall (Murray 1983, Busse et al. 2000, Kerns et al. 2006). If cheatgrass is present, bitterbrush seedling success is much lower. The factor that most limits establishment of bitterbrush seedlings is competition for water resources with cheatgrass, an invasive species (Clements and Young 2002).

Low sagebrush is killed by fire and does not sprout (Tisdale and Hironaka 1984). Establishment after fire is from seed, generally blown in and not from the seed bank (Bradley et al. 1992). Historically, fires were probably patchy due to the low productivity of these sites. Fine fuel loads generally average 100 to 400 pounds per acre (110- 450 kg/ha) but are occasionally as high as 600 pounds per acre (680 kg/ha) in low sagebrush habitat types (Bradley et al. 1992). Recovery time of low sagebrush following fire is variable (Young 1983). After fire, if regeneration conditions are favorable, low sagebrush recovers in 2 to 5 years; on harsh sites where cover is low to begin with and/or erosion occurs after fire, recovery may require more than 10 years (Young 1983). Slow regeneration may subsequently worsen erosion (Blaisdell et al. 1982).

Bluebunch wheatgrass – the dominant grass on this site — has coarse stems with little leafy material, therefore the aboveground biomass burns rapidly and little heat is transferred downward into the crowns (Young 1983). Bluebunch wheatgrass was described as fairly tolerant of burning, other than in May in eastern Oregon (Britton et al. 1990). Uresk et al. (1976) reported burning increased vegetative and reproductive vigor of bluebunch wheatgrass and is thus considered to experience slight damage to fire but is more susceptible in drought years (Young 1983). Most authors classify the plant as undamaged by fire (Kuntz 1982).

Idaho fescue responds to fire variably depending on condition and size of the plant, season and severity of fire, and ecological conditions. Mature Idaho fescue plants are commonly reported to be severely damaged by fire in all seasons (Wright et al. 1979). Initial mortality may be high (in excess of 75 percent) on severe burns, but usually varies from 20 to 50 percent (Barrington et al 1988). Rapid burns have been found to leave little damage to root crowns, and new tillers are produced with onset of fall moisture (Johnson et al. 1994). Conversely, Wright and others (1979) found the dense, fine leaves of Idaho fescue provided enough fuel to burn for hours after a fire had passed, thereby seriously injuring or killing the plant regardless of the intensity of the fire (Wright et al. 1979). Idaho fescue is commonly reported to be more sensitive to fire than bluebunch wheatgrass, the other prominent grass on these sites (Conrad and Poulton 1966). Robberecht and Defosse (1995), however, suggested the latter was more sensitive. They observed culm and biomass reduction with moderate fire severity in bluebunch wheatgrass, whereas a high fire severity was required for this reduction in Idaho fescue. In addition, given the same fire severity treatment, post-fire culm production was initiated earlier and more rapidly in Idaho fescue (Robberecht and Defosse 1995). The effect of fire on bunchgrasses relates to culm density, culm-leaf morphology, and the size of the plant.

Thurber's needlegrass, a minor component on this site, is very susceptible to fire-caused mortality. Burning has been found to decrease the vegetative and reproductive vigor of Thurber's needlegrass (Uresk et al. 1976). Fire also reduces basal area and yield of Thurber's needlegrass (Britton et al. 1990). The fine leaves and densely tufted growth form make this grass susceptible to subsurface charring of the crowns (Wright and Klemmedson 1965). Although timing of fire highly influences the response and mortality of Thurber's needlegrass, smaller bunch sizes are less likely to be damaged by fire (Wright and Klemmedson 1965). Thurber's needlegrass often survives fire, however, and will continue growth when conditions are favorable (Koniak 1985).

Sandberg bluegrass, a minor component of this ecological site, has been found to increase following fire likely due to its low stature and productivity (Daubenmire 1975) and may retard reestablishment of more deeply-rooted bunchgrasses.

State and transition model

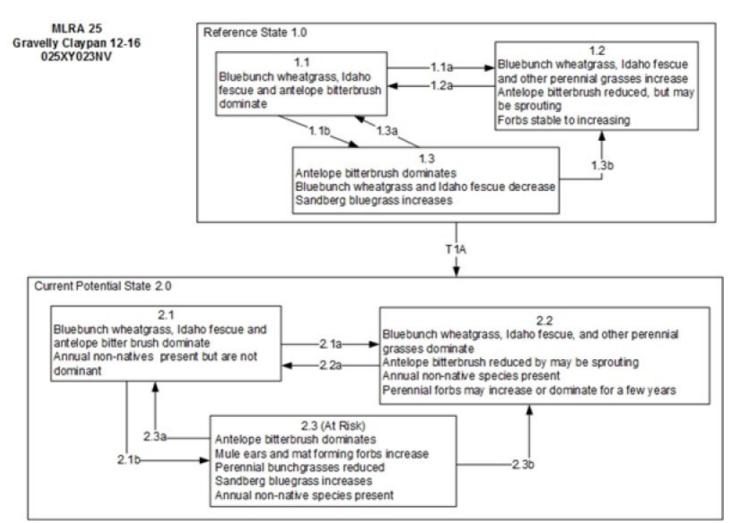


Figure 7. T. Stringham July 2015

MLRA 25 Gravelly Claypan 12-16 025XY023NV Legend

Reference State 1.0 Community Pathways

- 1.1a: Low severity fire creates grass/shrub mosaic; high severity fire significantly reduces shrub cover and leads to early/mid seral community, dominated by grasses and forbs.
- 1.1b: Time and lack of disturbance. Excessive herbivory and/or long-term drought may also reduce perennial understory.
- 1.2a: Time and lack of disturbance allows for shrub regeneration.
- 1.3a: Low severity fire creates sagebrush/grass mosaic.
- 1.3b: High severity fire significantly reduces sagebrush cover leading to early/mid seral community.

Transition T1A: Introduction of non-native species

Current Potential State 2.0 Community Pathways

- 2.1a: Low severity fire creates grass/shrub mosaic; high severity fire significantly reduces shrub cover and leads to early/mid seral community, dominated by grasses and forbs.
- 2.1b: Time and lack of disturbance. Inappropriate grazing management and/or long-term drought may also reduce perennial understory.
- 2.2a: Time and lack of disturbance allows for shrub regeneration.
- 2.3a: Low severity fire creates shrub/grass mosaic. Brush treatments with minimal soil disturbance; late-fall/winter grazing causing mechanical damage to bitterbrush and other shrubs would reduce the shrub overstory.
- 2.3b: High severity fire significantly reduces shrub cover leading to early/mid seral community.

Figure 8. T. Stringham July 2015

State 1 Reference State

The Reference State 1.0 is a representative of the natural range of variability under pristine conditions. The reference state has three general community phases: a shrub-grass dominant phase, a perennial grass dominant phase and a shrub dominant phase. State dynamics are maintained by interactions between climatic patterns and disturbance regimes. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Plant community phase changes are primarily driven by fire, periodic drought and/or insect or disease attack.

Community 1.1

Perennial bunchgrasses-antelope bitterbrush

The representative plant community is dominated by antelope bitterbrush, bluebunch wheatgrass and low sagebrush. Antelope bitterbrush dominates the visual aspect. Potential vegetative composition is about 45 percent grasses, 10 percent forbs and 45 percent shrubs.

Table 6. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	360	450	540
Shrub/Vine	360	450	540
Forb	80	100	120
Total	800	1000	1200

Community 1.2 Perennial bunchgrasses

This community phase is characteristic of a post-disturbance, early/mid-seral community. Idaho fescue, bluebunch wheatgrass, Thurber's needlegrass and other perennial bunchgrasses and forbs dominate. Depending on fire severity patches of intact sagebrush may remain. Antelope bitterbrush is reduced but may be sprouting along with rabbitbrush. Perennial forbs may be a significant component for a number of years following fire.

Community 1.3 Antelope bitterbrush

Antelope bitterbrush dominates the overstory and the deep-rooted perennial bunchgrasses in the understory are reduced either from competition with shrubs and/or from herbivory. Sandberg bluegrass may increase.

Pathway 1.1a Community 1.1 to 1.2

Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses and forbs to dominate the site. Fires will typically be low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring may be more severe and reduce sagebrush cover to trace amounts.

Pathway 1.1b Community 1.1 to 1.3

Time and lack of disturbance such as fire allows for sagebrush to increase and become decadent. Long-term drought, herbivory, or combinations of these will cause a decline in perennial bunchgrasses and fine fuels leading to a reduced fire frequency and allowing sagebrush to dominate the site.

Pathway 1.2a Community 1.2 to 1.1

Time and lack of disturbance will allow sagebrush to increase.

Pathway 1.3a Community 1.3 to 1.1

A low severity fire, herbivory or combinations will reduce the sagebrush overstory and create a sagebrush/grass mosaic.

Pathway 1.3b Community 1.3 to 1.2

Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community.

Current Potential State

This state is similar to the Reference State 1.0. Ecological function has not changed, however the resiliency of the state has been reduced by the presence of invasive weeds. This state has the same three general community phases. These non-native species can be highly flammable, and promote fire where historically fire had been infrequent. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These feedbacks include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Positive feedbacks decrease ecosystem resilience and stability of the state. These include the non-natives' high seed output, persistent seed bank, rapid growth rate, ability to cross pollinate, and adaptations for seed dispersal.

Community 2.1 Perennial bunchgrasses-antelope bitterbrush/annual non-native species

This community phase is compositionally similar to the Reference State Community Phase 1.1 with the presence non-native species in trace amounts. This community is dominated by bluebunch wheatgrass with a large component of antelope bitterbrush and Idaho fescue. An assortment of perennial forbs is present and may comprise a significant portion of total production.

Community 2.2 Perennial bunchgrasses/annual non-native species

This community phase is characteristic of a post-disturbance, early to mid-seral community where annual non-native species are present. Sagebrush and antelope bitterbrush are present in trace amounts; perennial bunchgrasses and forbs dominate the site. Depending on fire severity patches of intact sagebrush may remain. Antelope bitterbrush may be sprouting along with rabbitbrush, which may be dominant in the community. Perennial forbs may be a significant component for a number of years following fire. Annual non-native species are stable or increasing within the community.

Community 2.3 Antelope bitterbrush/Sandberg bluegrass/annual non-native species (at risk)

Figure 10. Gravelly Claypan (R025XY023NV) Phase 2.3 T. K. Stringham, July 2011

This community is at risk of crossing a threshold to another state. Antelope bitterbrush dominates the overstory and perennial bunchgrasses in the understory are reduced, either from competition with shrubs or from inappropriate grazing management, or from both. Rabbitbrush may be a significant component. Sandberg bluegrass may increase and become co-dominate with deep rooted bunchgrasses. Annual non-natives species may be stable or increasing due to lack of competition with perennial bunchgrasses. This site is susceptible to further degradation from inappropriate grazing management, drought, and fire.

Fire reduces the shrub overstory and allows for perennial bunchgrasses and forbs to dominate the site. Fires are typically low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring or a change in management favoring an increase in fine fuels may be more severe and reduce sagebrush cover to trace amounts. Annual non-native species are likely to increase after fire.

Pathway 2.1b Community 2.1 to 2.3

Time and lack of disturbance allows for sagebrush to increase and become decadent. Long-term drought reduces fine fuels and leads to a reduced fire frequency, allowing big sagebrush to dominate the site. Inappropriate grazing management reduces the perennial bunchgrass understory; conversely Sandberg bluegrass may increase in the understory depending on grazing management.

Pathway 2.2a Community 2.2 to 2.1

Time and/or grazing management that favors the establishment and growth of sagebrush allow the shrub component to recover. The establishment of sagebrush may take a very long time.

Pathway 2.3a Community 2.3 to 2.1

A change in grazing management that reduces shrubs will allow for the perennial bunchgrasses in the understory to increase. Heavy late-fall or winter grazing may cause mechanical damage and subsequent death to sagebrush, facilitating an increase in the herbaceous understory. Brush treatments with minimal soil disturbance will also decrease sagebrush and release the perennial understory. A low severity fire would decrease the overstory of sagebrush and low for the understory perennial grasses to increase. Due to low fuel loads in this State, fires will likely be small creating a mosaic pattern. Annual non-native species are present and may increase in the community.

Pathway 2.3b Community 2.3 to 2.2

Fire eliminates/reduces the overstory of sagebrush and allows for the understory perennial grasses and forbs to increase. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community. Annual non-native species respond well to fire and may increase post burn.

Transition T1A State 1 to 2

Trigger: This transition is caused by the introduction of non-native annual plants, such as cheatgrass, mustards, and bur buttercup. Slow variables: Over time the annual non-native species will increase within the community. Threshold: Any amount of introduced non-native species causes an immediate decrease in the resilience of the site. Annual non-native species cannot be easily removed from the system and have the potential to significantly alter disturbance regimes from their historic range of variation.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike	-		•	
1	Primary Perennial Grasses			370–830	
	bluebunch wheatgrass	PSSPS	Pseudoroegneria spicata ssp. spicata	200–400	_
	Idaho fescue	FEID	Festuca idahoensis	100–200	_
	Thurber's needlegrass	ACTH7	Achnatherum thurberianum	50–150	_
	bluegrass	POA	Poa	20–80	_
2	Secondary Perennial	Grasses		50–100	
	squirreltail	ELEL5	Elymus elymoides	5–30	_
	basin wildrye	LECI4	Leymus cinereus	5–30	_
Forb					
3	Perennial			50–150	
	aster	ASTER	Aster	5–30	_
	balsamroot	BALSA	Balsamorhiza	5–30	_
	tapertip hawksbeard	CRAC2	Crepis acuminata	5–30	_
Shrub	/Vine				
4	Primary Shrubs			350–650	
	antelope bitterbrush	PUTR2	Purshia tridentata	250–450	_
	little sagebrush	ARAR8	Artemisia arbuscula	100–200	_
5	Secondary Shrubs			100–200	
	Utah serviceberry	AMUT	Amelanchier utahensis	5–30	_
	yellow rabbitbrush	CHVI8	Chrysothamnus viscidiflorus	5–30	_
	slender buckwheat	ERMI4	Eriogonum microthecum	5–30	-
	snowberry	SYMPH	Symphoricarpos	5–30	_

Animal community

Livestock Interpretations:

This site is suited for livestock grazing. Considerations for grazing management include timing, intensity and duration of grazing. Targeted grazing could be used to decrease the density of non-natives.

In general, bunchgrasses best tolerate light grazing after seed formation. Britton and others (1979) observed the effects of harvest date on basal area of 5 bunchgrasses in eastern Oregon, including Idaho fescue, and found grazing from August to October (after seed set) has the least impact on these bunchgrasses. Therefore, abusive grazing during the growing season will reduce perennial bunchgrasses, with the exception of Sandberg bluegrass (Tisdale and Hironaka 1981). Abusive grazing by cattle or horses will likely increase low sagebrush, rabbitbrush and some forbs such as arrowleaf balsamroot. Annual non-native weedy species may invade, such as cheatgrass and mustards, and potentially medusahead.

Reduced bunchgrass vigor or density provides an opportunity for Sandberg bluegrass expansion and/or cheatgrass and other invasive species to occupy interspaces. Bluegrass is a widespread, palatable forage grass that is one of the earliest grasses in the spring and is sought by domestic livestock and several wildlife species. Its production is closely tied to weather conditions; little forage is produced in drought years, making it a less dependable food source than other perennial bunchgrasses. Sandberg bluegrass increases under grazing pressure (Tisdale and Hironaka 1981) and is capable of co-existing with cheatgrass or other weedy species. Excessive sheep grazing favors Sandberg bluegrass; however, where cattle are the dominant grazers, cheatgrass often dominates (Daubenmire 1970). Thus, depending on the season of use, the grazer and site conditions, either Sandberg bluegrass or cheatgrass may become the dominant understory with inappropriate grazing management.

Idaho fescue provides important forage for many types of domestic livestock. The foliage cures well and is preferred

by livestock in late fall and winter. Idaho fescue tolerates light to moderate grazing (Ganskopp and Bedell 1980) and is moderately resistant to trampling (Cole 1987). Heavy grazing may lead to replacement of Idaho fescue with non-native species such as cheatgrass (Mueggler 1984).

Bluebunch wheatgrass is moderately grazing-tolerant and is very sensitive to defoliation during the active growth period (Blaisdell and Pechanec 1949, Laycock 1967, Anderson and Scherzinger 1975, Britton et al. 1990). Herbage and flower stalk production was reduced with clipping at all times during the growing season; however, clipping was most harmful during the boot stage (Blaisdell and Pechanec 1949). Tiller production and growth of bluebunch was also greatly reduced when clipping was coupled with drought (Busso and Richards 1995). Mueggler (1975) estimated that low-vigor bluebunch wheatgrass may need up to 8 years rest to recover. Although an important forage species, it is not always the preferred species by livestock and wildlife.

Antelope bitterbrush is a critical browse species for domestic livestock (Wood 1995). Grazing tolerance is dependent on site conditions (Garrison 1953) and the shrub can be severely hedged during the dormant season for grasses and forbs.

Domestic sheep and, to a much lesser degree, cattle consume low sagebrush, particularly during the spring, fall, and winter (Sheehy and Winward 1981). Heavy dormant season grazing by sheep will reduce sagebrush cover and increase grass production (Laycock 1967). Severe trampling damage to supersaturated soils may occur if sites are used in early spring when there is abundant snowmelt. Trampling damage, particularly from cattle or horses, in low sagebrush habitat types is greatest when high clay content soils are wet. In drier areas that contain more gravelly soils, no serious trampling damage occurs, even when the soils are wet (Hironaka et al. 1983).

Stocking rates vary over time depending upon season of use, climate variations, site, and previous and current management goals. A safe starting stocking rate is an estimated stocking rate that is fine-tuned by the client by adaptive management through the year and from year to year.

Wildlife Interpretations:

Pronghorn antelope, mule deer, elk, and bighorn sheep utilize antelope bitterbrush extensively. Mule deer use of antelope bitterbrush peaks in September, when antelope bitterbrush may compose 91 percent of the diet. Winter use is greatest during periods of deep snow. Antelope bitterbrush seed is a large part of the diets of rodents, especially deer mice and kangaroo rats.

Mule deer utilize and sometimes prefer low sagebrush, particularly in winter and early spring. Sagebrush-grassland communities provide critical sage-grouse breeding and nesting habitats. Open Wyoming sagebrush communities are preferred nesting habitat. Meadows surrounded by sagebrush may be used as feeding and strutting grounds. Sagebrush is a crucial component of their diet year-round, and sage-grouse select sagebrush almost exclusively for cover. Leks are often located on low sagebrush sites, grassy openings, dry meadows, ridgetops, and disturbed sites. Bluebunch wheatgrass is considered one of the most important forage grass species on western rangelands for wildlife.

Idaho fescue is an important source of forage for pronghorn and deer in ranges of northern Nevada.

Recreational uses

Aesthetic value is derived from the diverse floral and faunal composition and the colorful flowering of wild flowers and shrubs during the spring and early summer. This site offers rewarding opportunities to photographers and for nature study. This site is used for camping and hiking and has potential for upland and big game hunting.

Other information

Low sagebrush can be successfully transplanted or seeded in restoration. Antelope bitterbrush has been used extensively in land reclamation. Antelope bitterbrush enhances succession by retaining soil and depositing organic material and in some habitats and with some ecotypes, by fixing nitrogen.

Inventory data references

Physiographic and Soil features were gathered from NASIS.

Type locality

Location 1: Humboldt County, NV		
General legal description	NV777 MU 892	

Other references

Anderson, E. W. and R. J. Scherzinger. 1975. Improving quality of winter forage for elk by cattle grazing. Journal of Range Management 28: 120-125.

Baker, W. L. 2006. Fire and restoration of sagebrush ecosystems. Wildlife Society Bulletin 34: 177-185.

Barnett, J. K. and J. A. Crawford. 1994. Pre-laying nutrition of sage grouse hens in Oregon. Journal of Range Management 47: 114-118.

Barney, M. A. and N. C. Frischknecht. 1974. Vegetation changes following fire in the pinyon-juniper type of west-central Utah. Journal of Range Management 27:91-96.

Barrington, M., S. Bunting, and G. Wright. 1988. A fire management plan for Craters of the Moon National Monument. Cooperative Agreement CA-9000-8-0005. Moscow, ID: University of Idaho, Range Resources Department. 52 p. Draft.

Bates, J. D., T. Svejcar, R. F. Miller, and R. A. Angell. 2006. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments 64: 670-697.

Beardall, L. E. and V. E. Sylvester. 1976. Spring burning of removal of sagebrush competition in Nevada. In: Tall Timbers Fire Ecology conference and proceedings. Tall Timbers Research Station. 14: 539-547.

Blaisdell, J. P., R. B. Murray, and E. D. McArthur. 1982. Managing intermountain rangelands - sagebrush-grass ranges. Gen. Tech. Rep. INT-134. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT. p. 41.

Blaisdell, J. P. and W. F. Mueggler. 1956. Sprouting of bitterbrush (Purshia tridentata) following burning or top removal. Ecology 37:365-370.

Blaisdell, J. P. and J. F. Pechanec. 1949. Effects of herbage removal at various dates on vigor of bluebunch wheatgrass and arrowleaf balsamroot. Ecology 30:298-305.

Bradley, A. F., N. V. Noste, and W. C. Fischer. 1992. Fire ecology of forests and woodlands in Utah. Gen. Tech. Rep. INT-287. U.S. Department of Agriculture, Forest Service, Intermountain Research Station. P. 128.

Britton, C.M., F.A. Sneva, and R.G. Clark. 1979. Effect of harvest date on five bunchgrasses of eastern Oregon. In: 1979 progress report: research in rangeland management. Special report 549. Corvallis, OR: Oregon State University, Agricultural Experiment Station: Pgs 16-19. In cooperation with: U.S. Department of Agriculture, SEA-AR.

Britton, C. M., G. R. McPherson, and F. A. Sneva. 1990. Effects of burning and clipping on five bunchgrasses in eastern Oregon. Great Basin Naturalist 50:115-120.

Bunting, S. 1994. Effects of fire on juniper woodland ecosystems in the Great Basin. In: S. Monsen, S. Kitchen [eds] Proceedings - Ecology and management of annual rangelands. Gen. Tech. Rep. INT-GTR-313. U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT. p. 53-55.

Busse, D., A. Simon, and M. Riegel. 2000. Tree-growth and understory responses to low-severity prescribed burning in thinned Pinus ponderosa forests of central Oregon. Forest Science 46:258-268.

Busso, C. A. and J. H. Richards. 1995. Drought and clipping effects on tiller demography and growth of two tussock grasses in Utah. Journal of Arid Environments 29: 239-251.

Caudle, D., J. DiBenedetto, M. Karl, H. Sanchez, and C. Talbot. 2013. Interagency Ecological Site Handbook for Rangelands. Available at: http://jornada.nmsu.edu/sites/jornada.nmsu.edu/files/InteragencyEcolSiteHandbook.pdf. Accessed 4 October 2013.

Chambers, J., B. Bradley, C. Brown, C. D'Antonio, M. Germino, J. Grace, S. Hardegree, R. Miller, and D. Pyke. 2013. Resilience to stress and disturbance, and resistance to *Bromus tectorum* L. invasion in cold desert shrublands of western North America. Ecosystems 17:1-16.

Chambers, J. C., B. A. Roundy, R. R. Blank, S. E. Meyer, and A. Whittaker. 2007. What makes Great Basin sagebrush ecosystems invasible by *Bromus tectorum*? Ecological Monographs 77:117-145.

Clark, R. G., M. B. Carlton, and F. A. Sneva. 1982. Mortality of bitterbrush after burning and blipping in eastern Oregon. Journal of Range Management 35:711-714.

Clements, C. D. and J. A. Young. 2002. Restoring antelope bitterbrush. Rangelands 24:3-6.

Cole, D.N. 1987. Effects of three seasons of experimental trampling on five montane forest communities and a grassland in western Montana, USA. Biological Conservation 40:219-244.

Comstock, J. P. and J. R. Ehleringer. 1992. Plant adaptation in the Great Basin and Colorado Plateau. Western North American Naturalist 52:195-215.

Conrad, C. E. and C. E. Poulton. 1966. Effect of a wildfire on Idaho fescue and bluebunch wheatgrass. Journal of Range Management 19: 138-141.

Cook, J. G., T. J. Hershey, and L. L. Irwin. 1994. Vegetative response to burning on Wyoming mountain-shrub big game ranges. Journal of Range Management 47: 296-302.

Currie, P. O., D. W. Reichert, J. C. Malechek, and O. C. Wallmo. 1977. Forage selection comparisons for mule deer and cattle under managed ponderosa pine. Journal of Range Management 30: 352-356.

Daubenmire, R. 1970. Steppe vegetation of Washington. Technical bulletin. Washington Agriculture Experiment Station. 131 pp.

Daubenmire, R. 1975. Plant succession on abandoned fields, and fire influences in a steppe area in Southeastern Washington. Northwest Science 49: 36-48.

Dayton, W. 1937. Range Plant Handbook. USDA, Forest Service. Bull.

Dobrowolski, J. P., M. M. Caldwell, and J. H. Richards. 1990. Basin hydrology and plant root systems. In: C. B. Osmand, L. F. Pitelka, G. M. Hildy [eds]. Plant biology of the basin and range. Ecological Studies. 80: 243-292.

Eckert, R. E., Jr. and J. S. Spencer. 1987. Growth and reproduction of grasses heavily grazed under rest-rotation management. Journal of Range Management 40: 156-159.

Evans, R. A. and J. A. Young. 1978. Effectiveness of rehabilitation practices following wildfire in a degraded big sagebrush-downy brome community. Journal of Range Management 31: 185-188.

Everett, R. L. and K. Ward. 1984. Early plant succession on pinyon-juniper controlled burns. Northwest Science 58: 57-68.

Furniss, M. M. and W. F. Barr. 1975. Insects affecting important native shrubs of the northwestern United States. General Technical Report INT-19. Intermountain Forest and Range Experiment Station, U.S. Department of Agriculture, Forest Service. Ogden, UT. p. 68.

Ganskopp, D. 1988. Defoliation of Thurber needlegrass: Herbage and root responses. Journal of Range Management 41:472-476.

Garrison, G. A. 1953. Effects of clipping on some range shrubs. Journal of Range Management 6:309-317.

Hironaka, M., M. A. Fosberg, and A. H. Winward. 1983. Sagebrush-grass habitat types of southern Idaho. Bulletin Number 35. University of Idaho, Forest, Wildlife and Range Experiment Station, Moscow, ID.

Houghton, J.G., C.M. Sakamoto, and R.O. Gifford. 1975. Nevada's weather and climate, Special Publication 2. Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno, NV.

Jensen, M.E. 1990. Interpretation of environmental gradients which influence sagebrush community distribution in northeastern Nevada. J. of Range Management 43:161-166.

Johnson, C.G., Jr., R.R. Clausnitzer, P.J. Mehringer, and C. Oliver. 1994. Biotic and abiotic processes of eastside ecosystems: the effects of management on plant and community ecology and on stand and landscape vegetation dynamics. Gen. Tech. Rep. PNW-GTR-322. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 66 p.

Kerns, B. K., W. G. Thies, and C. G. Niwa. 2006. Season and severity of prescribed burn in ponderosa pine forests: implications for understory native and exotic plants. Ecoscience 13: 44-55.

Kindschy, R. R., C. S. Undstrom, and J. D. Yoakum. 1982. Wildlife habitats in managed rangelands - The Great Basin of southeastern Oregon: Pronghorns. Gen. Tech. Rep. PNW-GTR-145. Portland, OR. P. 18

Kitchen, S. G. and E. D. McArthur. 2007. Big and black sagebrush landscapes. In: S. Hood, M. Miller [eds.]. Fire ecology and management of the major ecosystems of southern Utah. Gen. Tech. Rep. RMRMS-GTR-202. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO. P. 73-95.

Koniak, S. 1985. Succession in pinyon-juniper woodlands following wildfire in the Great Basin. The Great Basin Naturalist 45:556-566.

Kuntz, D.E. 1982. Plant response following spring burning in an Artemisia tridentata subsp. vaseyana/Festuca idahoensis habitat type. Moscow, ID: University of Idaho. 73 p. Thesis.

Laycock, W. A. 1967. How heavy grazing and protection affect sagebrush-grass ranges. Journal of Range Management 20: 206-213.

McConnell, B. R. and J. G. Smith. 1977. Influence of grazing on age-yield interactions in bitterbrush. Journal of Range Management 30: 91-93.

Miller, R. F. and R. J. Tausch. 2000. The role of fire in pinyon and juniper woodlands: A descriptive analysis. In Proceedings of the invasive species workshop: The role of fire in the control and spread of invasive species. Fire conference. P. 15-30.

Mueggler, W. F. 1975. Rate and pattern of vigor recovery in Idaho fescue and bluebunch wheatgrass. Journal of Range Management 28: 198-204.

Mueggler, W. F. and J. P. Blaisdell. 1951. Replacing wyethia with desirable forage species. Journal of Range Management 4: 143-150.

Murray, R. 1983. Response of antelope bitterbrush to burning and spraying in southeastern Idaho. In: Tiedemann, Arthur R.; Johnson, Kendall L., [eds.] Research and management of bitterbrush and cliffrose in western North America. General Technical Report INT-152. Ogden, UT: US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station p. 142-152.

National Oceanic and Atmospheric Administration. 2004. The North American Monsoon. Reports to the Nation. National Weather Service, Climate Prediction Center. Available online: http://www.weather.gov

Richards, J. H. and M. M. Caldwell. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486-489.

Robberecht, R. and G. Defossé. 1995. The relative sensitivity of two bunchgrass species to fire. International Journal of Wildland Fire 5:127-134.

Sheehy, D. P. and A. H. Winward. 1981. Relative palatability of seven Artemisia taxa to mule deer and sheep. Journal of Range Management 34:397-399.

Tausch, R. J. 1999. Historic pinyon and juniper woodland development. In: Proceedings: Ecology and management of pinyon–juniper communities within the interior west RMRS-P-9. Ogden, UT, USA: US Department of Agriculture, Forest Service, Rocky Mountain Research Station. P. 12-19.

Tausch, R. J. and N. E. West. 1988. Differential establishment of pinyon and juniper following fire. American Midland Naturalist 119: 174-184.

Tisdale, E. W. and M. Hironaka. 1981. The sagebrush-grass region: A review of the ecological literature. University of Idaho, Forest, Wildlife and Range Experiment Station. Moscow, ID. P. 31.

Uresk, D. W., J. F. Cline, and W. H. Rickard. 1976. Impact of wildfire on three perennial grasses in south-central Washington. Journal of Range Management 29:309-310.

Urness, P. J. 1965. Influence of range improvement practices on composition, production, and utilization of Artemisia deer winter range in central Oregon. Oregon State University.

USDA-NRCS Plants Database (Online; http://www.plants.usda.gov).

Vose, J. M. and A. S. White. 1991. Biomass response mechanisms of understory species the first year after prescribed burning in an Arizona ponderosa-pine community. Forest Ecology and Management 40: 175-187.

Wood, M. K., Bruce A. Buchanan, & William Skeet. 1995. Shrub preference and utilization by big game on New Mexico reclaimed mine land. Journal of Range Management 48: 431-437.

Wright, H. A. and J. O. Klemmedson. 1965. Effect of fire on bunchgrasses of the sagebrush-grass region in southern Idaho. Ecology 46: 680-688.

Wright, H.A., L.F. Neuenschwander, and C.M. Britton. 1979. The role and use of fire in sagebrush-grass and pinyon-juniper plant communities: A state-of-the-art review. Gen. Tech. Rep. INT-58. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 48 p.

Young, R.P. 1983. Fire as a vegetation management tool in rangelands of the intermountain region. In: Monsen, S.B. and N. Shaw (eds). Managing intermountain rangelands — Improvement of range and wildlife habitats: Proceedings of symposia; 1981 September 15-17; Twin Falls, ID; 1982 June 22-24; Elko, NV. Gen. Tech. Rep. INT-157. Ogden, UT. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Pgs 18-31.

Contributors

RK/GKB TK Stringham P Novack-Echenique

Approval

Kendra Moseley, 4/25/2024

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	05/05/2024
Approved by	Kendra Moseley
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators	
1.	Number and extent of rills:
2.	Presence of water flow patterns:
3.	Number and height of erosional pedestals or terracettes:
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
5.	Number of gullies and erosion associated with gullies:
6.	Extent of wind scoured, blowouts and/or depositional areas:
7.	Amount of litter movement (describe size and distance expected to travel):
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial

and thickness of compaction layer (usually none; describe soil profile features which may be for compaction on this site):
I/Structural Groups (list in order of descending dominance by above-ground annual-production or liveer using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
ant:
f plant mortality and decadence (include which functional groups are expected to show mortality or e):
ercent litter cover (%) and depth (in):
annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-n):
nvasive (including noxious) species (native and non-native). List species which BOTH characterize states and have the potential to become a dominant or co-dominant species on the ecological site if e establishment and growth is not actively controlled by management interventions. Species that ominant for only one to several years (e.g., short-term response to drought or wildfire) are not clants. Note that unlike other indicators, we are describing what is NOT expected in the reference state clogical site:
plant reproductive capability:
olo