

Ecological site R035XB206AZ Sandy Upland 6-10" p.z. Warm

Accessed: 05/19/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

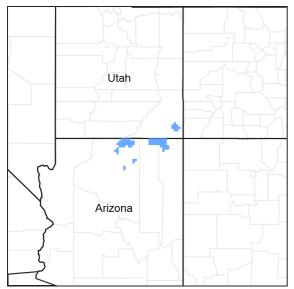


Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 035X–Colorado Plateau

This ecological site occurs in Common Resource Area 35.2 - the Colorado Plateau Shrub - Grasslands

Elevations range from 3800-5800 feet and precipitation averages 6 to 10 inches per year. Vegetation includes shadscale, fourwing saltbush, Mormon tea, blackbrush, Indian ricegrass, galleta, blue grama, and black grama. The soil temperature regime is mesic and the soil moisture regime is typic aridic. This unit occurs within the Colorado Plateau Physiographic Province and is characterized by a sequence of flat to gently dipping sedimentary rocks eroded into plateaus, valleys and deep canyons. Sedimentary rock classes dominate the plateau with volcanic fields occurring for the most part near its margin.

Associated sites

R035XB217AZ	Sandy Upland 6-10" p.z. Deep, non-calcareous, sandy sites on plains, fans, and stabilized dunes
R035XB219AZ	Sandy Loam Upland 6-10" p.z. Deep, coarse-loamy sites on rolling plains and uplands with slopes mainly less than 12 percent

Similar sites

R035XB217AZ	Sandy Upland 6-10" p.z.	1
	Deep, non-calcareous, sandy sites on plains, fans, and stabilized dunes	

Table 1. Dominant plant species

Tree	Not specified					
Shrub	(1) Coleogyne ramosissima (2) Ephedra cutleri					
Herbaceous	(1) Achnatherum hymenoides					

Physiographic features

This site occurs on stabilized dunes and sand sheets in dune fields. Sand sheets may occur in interdunes, on relatively flat plateaus, or on stream terraces. Slopes typically range from 1 to 15%. Elevations range from 3800 to 5800 feet.

Landforms	(1) Sand sheet(2) Dune(3) Interdune
Flooding frequency	None
Ponding frequency	None
Elevation	1,158–1,768 m
Slope	1–15%
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

The 35.2 Colorado Plateau Cold Desert Shrub - Grassland common resource area has a very dry and windy climate that is hot in the summer and cold in the winter. The annual precipitation averages between 6 and 10 inches. The soil moisture regime is typic aridic and the soil temperature regime is mesic. A slight majority of the precipitation arrives during the late fall, winter, and early spring. This winter season moisture originates in the Pacific Ocean and arrives as rain, or sometimes snow, during widespread frontal storms of generally low intensity. The majority of the snow (average range of 1 to 17 inches) falls from December through February, but rarely lasts more than a few days. A seasonal drought occurs from late May through early July. Summer rains occur from July through September during brief intense local thunderstorms. The rain is sporadic in intensity and location. The moisture originates from the Gulf of Mexico in the early summer and the Gulf of California in the late summer/early fall. Windy conditions are common year round, but the winds are strongest and most frequent during the spring.

Table 3. Representative climatic features

Frost-free period (average)	181 days
Freeze-free period (average)	207 days
Precipitation total (average)	254 mm

There are no water features associated with this site.

Soil features

Soils on this site are moderately deep to very deep. Surface textures are sandy and range from course sand to loamy very fine sand. Subsurface textures are loamy fine sand, fine sand, loamy sand and sand. They are formed in alluvium and eolian from sandstone and siltstone from Navajo sandstone and Jurassic age formations. The upper surface horizons may be slightly effervescent to non-effervescent. Below the surface horizon, the soil generally effervesces slightly to violently.

Typical Taxonomic Units include:

Little Colorado River Area (AZ707) Soil Map Units - 34-Sheppard; Navajo Mountain Area (AZ711) - Soil Map Unit's - 1-Aneth; 19, 31, 49, 52, 50, 53, 58, 63-Sheppard; 53-Sheppard, gypsic substratum.

Parent material	(1) Alluvium-sandstone and siltstone
Surface texture	(1) Coarse sand(2) Sand(3) Loamy very fine sand
Family particle size	(1) Sandy
Drainage class	Somewhat excessively drained to excessively drained
Permeability class	Rapid
Soil depth	102–183 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	3.81–10.67 cm
Calcium carbonate equivalent (0-101.6cm)	0–10%
Soil reaction (1:1 water) (0-101.6cm)	7.4–8.6
Subsurface fragment volume <=3" (Depth not specified)	0%
Subsurface fragment volume >3" (Depth not specified)	0%

Table 4. Representative soil features

Ecological dynamics

An ecological site is not a precise assemblage of species for which the proportions are the same from place to place or from year to year. In all plant communities, variability is apparent in productivity and occurrence of individual species. Spatial boundaries of the communities; however, can be recognized by characteristic patterns of species composition, association, and community structure. The historic climax plant community for this ecological site has been described by sampling relict or relatively undisturbed sites and/or reviewing historic records. The historic climax plant community is the plant community that evolved over time with the soil forming process and long term changes in climatic conditions of the area. It is the plant community that was best adapted to the unique combination of environmental factors associated with the site.

Natural disturbances, such as drought, fire, grazing of native fauna, and insects, are inherent in the development and maintenance of these plant communities. The effects of these disturbances are part of the range of characteristics of the ecological site. Fluctuations in plant community structure and function caused by the effects of natural disturbances help establish the boundaries and characteristics of an ecological site. They are accounted for as part of the range of characteristics of the ecological site. Recognizable plant community phases are identified in the reference state of the ecological site. Some sites may have a small range of variation, while others have a large range. Some plant community phases may exist for long periods of time, while others may only occur for a couple of years after a disturbance.

Deterioration of the plant community, hydrology, or soil site stability on an ecological site can result in crossing a threshold or potentially irreversible boundary to another state, or equilibrium. This can occur as a result of the loss of soil surface through erosion, the loss of the stability of the site due to disturbances that cause active erosion on the site, increases in the amounts and/or patterns or runoff from rainstorms, changes in availability of surface and subsurface water, significant changes in plant structural and functional types, or the introduction of non-native species. When these thresholds are crossed, the potential of the ecological site to return to the historic climax plant community can be lost, or restoration will require significant inputs . There may be multiple states possible for an ecological site, determined by the type and or severity of disturbance.

The known states and transition pathways for this ecological site are described in the state and transition model. Within each state, there may be one or more known plant community phases. These community phases describe the different plant community that can be recognized and mapped across this ecological site. The state and transition model is intended to help land users recognize the current plant community on the ecological site, and the management options for improving the plant community to the desired plant community.

Plant production information in this site description is standardized to the annual production on an air-dry weight basis in near normal rainfall years.

State and transition model

35.2AZ Sandy Upland 6-10" p.z. Warm (R035XB206AZ)

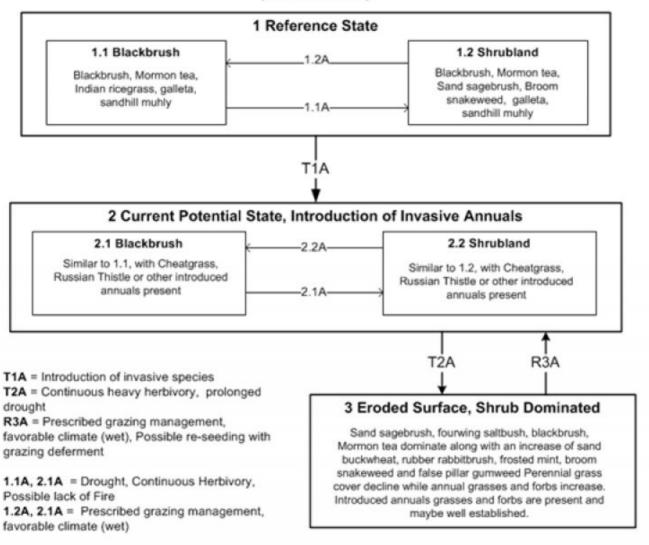


Figure 4. State and Transition Model - R035XB206AZ

State 1 Reference State

The dominant aspect of this reference plant community is a shrubland with blackbrush and other shrubs, mixed with perennial cool and warm season grasses.

Community 1.1 Blackbrush Shrubland

The dominant aspect of this plant community is a shrubland (blackbrush and Mormon tea), mixed with perennial cool and warm season grasses and some forbs. Other common shrubs include broom snakeweed, fourwing saltbush and sand sagebrush. Common grasses include Indian ricegrass, galleta, sandhill muhly, blue grama and dropseeds.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Shrub/Vine	168	213	258
Grass/Grasslike	90	135	179
Forb	11	34	50
Total	269	382	487

Table 6. Soil surface cover

Tree basal cover	0%
Shrub/vine/liana basal cover	5-10%
Grass/grasslike basal cover	1-5%
Forb basal cover	0-5%
Non-vascular plants	0%
Biological crusts	1-20%
Litter	10-25%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	40-70%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	-	1-10%	1-5%	0-3%
>0.15 <= 0.3	-	5-10%	0-5%	0-1%
>0.3 <= 0.6	-	1-5%	0-1%	_
>0.6 <= 1.4	-	0-1%	-	_
>1.4 <= 4	-	_	-	_
>4 <= 12	-	_	-	_
>12 <= 24	_	_	_	_
>24 <= 37	-	_	-	_
>37	-	-	-	_

Figure 6. Plant community growth curve (percent production by month). AZ3521, 35.2 6-10" p.z. all sites. Growth begins in the spring and continues through the summer. Most growth in this CRA occurs in the spring using stored winter moisture..

Ja	n	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0		1	9	20	27	14	10	11	5	3	0	0

Figure 7. Plant community growth curve (percent production by month). AZ5202, Indian ricegrass, 35.2 6-10" p.z.. Growth begins in spring, most growth occurs in May, goes dormant during summer heat..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	10	15	40	20	0	0	10	5	0	0

Figure 8. Plant community growth curve (percent production by month). AZ5206, 35.2 6-10" p.z. blackbrush. Most growth occurs in the srping, goes dormant during the summer..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	10	20	50	20	0	0	0	0	0	0

Figure 9. Plant community growth curve (percent production by month). AZ5208, 35.2 6-10" p.z. Cutler Mormon tea. Most growth occurs in the spring, goes dormant in the summer, some growth occurs in the fall..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	10	50	30	0	0	0	5	5	0	0

Community 1.2 Shrubland

The aspect of this plant community is a blackbrush shrubland mixed with mormon tea, sand sagebrush and/or broom snakeweed. Perennial grasses are reduced with dominant grasses of galleta and sandhill muhly with lesser amounts of Indian ricegrass. This site has increased bare ground and lesser amounts of herbaceous cover due to soil surface disturbance.

Pathway 1.1A Community 1.1 to 1.2

Drought, unmanaged grazing, possible lack of fire or other disturbances that cause soil surface instability.

Pathway 1.2A Community 1.2 to 1.1

Grazing management, favorable climate (wet), improved soil surface stability to increase herbaceous cover and slow further sand sagebrush and snakeweed expansion.

State 2 Current Potential, Introduction of Invasive Annuals

The dominant aspect of the plant community in this state is a shrubland with blackbrush and other shrubs, mixed with perennial cool and warm season grasses with the introduction of non-native invasive annuals.

Community 2.1 Blackbrush Shrubland - Current Potential

The aspect of this site is a shrubland (blackbrush and Mormon tea) with perennial cool and warm season grasses and some forbs with introduced annuals present. Other shrubs include broom snakeweed, fourwing saltbush and sand sagebrush. Common grasses include Indian ricegrass, galleta, sandhill muhly, blue grama and dropseeds. Introduced annuals occuring on the site are cheatgrass and Russian thistle.

Community 2.2 Shrubland - Current Potential

The dominant aspect of this plant community is a blackbrush shrubland with other shrubs such as Mormon tea, sand sagebrush and broom snakeweed with introduced annuals present. Perennial grasses are in decline with dominant grasses of galleta and sandhill muhly with lesser amounts of Indian ricegrass. Introduced annual species are present in minor amounts, such as cheatgrass and Russian thistle.

Pathway 2.1A Community 2.1 to 2.2 Drought, Unmanaged grazing, lack of fire or other disturbances that cause soil surface instability.

Pathway 2.2A Community 2.2 to 2.1

Grazing management, favorable climate/precipitation, improved soil surface stability to increase herbaceous cover.

State 3 Eroded Surface, Shrub Dominated

This plant community is characterized by a dominance of shrubs with a decrease in perennial grasses and increase in annual native and non-native annuals.

Community 3.1 Eroded Surface, Shrub Dominated

This plant community is characterized by a dominance of shrubs with a decrease in perennial grasses and increase in annual native and non-native annuals. Shrubs include blackbrush, sand sagebrush, rabbitbrush, Mormon tea, sand buckwheat and false pillar gumweed. Bare ground ranges from 75 to 90 percent along with increased signs of active deposition, blowouts and wind scour. A return to State 2 may only be possible with a combination of intensive management inputs and a favorable climate regime to allow soil stabilization over time. Due to sand sagebrush's ability to quickly colonize disturbed sandy sites and blackbrush's slow establishment, a return back to a blackbrush dominated plant community may take several years or decades, if possible.

Transition T1A State 1 to 2

Introduction of non-native annuals species creates an irreversible change in the plant community

Transition T2A State 2 to 3

Unmanaged grazing, prolonged drought, loss of herbaceous cover with severe soil surface disturbace. Loss of soil site stability and biotic integrity, creates bare areas with low soil surface resistance to erosion.

Restoration pathway R3A State 3 to 2

Managed grazing, invasive weed control, reseeding of perennial grasses, favorable climate.

Additional community tables

Table 8. Community 1.1 plant community comp

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Cool season perennial	grasses		56–101	
	Indian ricegrass	ACHY	Achnatherum hymenoides	39–78	_
	squirreltail	ELEL5	Elymus elymoides	4–20	-
	needle and thread	HECO26	Hesperostipa comata	4–20	-
	purple threeawn	ARPU9	Aristida purpurea	0–12	_
2	Warm season perennia	l grasses		39–78	
	James' galleta	PLJA	Pleuraphis jamesii	4–39	_
	spike dropseed	SPCO4	Sporobolus contractus	0–20	_

	sand dropseed	SPCR	Sporobolus cryptandrus	0–20	-
	mesa dropseed	SPFL2	Sporobolus flexuosus	0–20	_
	black grama	BOER4	Bouteloua eriopoda	4–20	_
	blue grama	BOGR2	Bouteloua gracilis	4–20	_
	sandhill muhly	MUPU2	Muhlenbergia pungens	0–8	_
	Grass, perennial	2GP	Grass, perennial	0–8	_
3	Annual grasses	•	•	0–11	
	sixweeks grama	BOBA2	Bouteloua barbata	0–8	_
	sixweeks fescue	VUOC	Vulpia octoflora	0–8	_
Forb	-	-			
4	Forbs			12–50	
	fineleaf hymenopappus	HYFIL	Hymenopappus filifolius var. lugens	0–8	_
	tansyaster	MACHA	Machaeranthera	0–8	_
	Forb, annual	2FA	Forb, annual	0–8	_
	rose heath	CHER2	Chaetopappa ericoides	0–8	_
	Wright's bird's beak	COWR2	Cordylanthus wrightii	0–8	-
	globemallow	SPHAE	Sphaeralcea	0–8	_
	winged buckwheat	ERAL4	Eriogonum alatum	0–4	-
	flatcrown buckwheat	ERDED4	Eriogonum deflexum var. deflexum	0–4	-
	buckwheat	ERIOG	Eriogonum	0–4	_
	ragweed	AMBRO	Ambrosia	0–4	_
	Eastwood's sandwort	AREA	Arenaria eastwoodiae	0–4	_
	milkvetch	ASTRA	Astragalus	0–4	_
	crownleaf evening primrose	OECO2	Oenothera coronopifolia	0-4	_
	New Mexico groundsel	PANEN	Packera neomexicana var. neomexicana	0-4	_
	phlox	PHLOX	Phlox	0–4	-
	purslane	PORTU	Portulaca	0–4	-
	spurge	EUPHO	Euphorbia	0–3	-
Shru	b/Vine	-	-	-	
5	Dominate Shrub			118–157	
	blackbrush	CORA	Coleogyne ramosissima	118–157	-
6	Subshrubs			17–45	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	6–22	_
	southern goldenbush	ISPL	Isocoma pluriflora	0–11	_
	gilia beardtongue	PEAM	Penstemon ambiguus	0–11	_
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	0–11	_
	Riddell's ragwort	SERI2	Senecio riddellii	0–11	_
7	Yucca and agave-like			1–11	
	narrowleaf yucca	YUAN2	Yucca angustissima	1–11	_
8	Cacti	-		0–6	
	pricklypear	OPUNT	Opuntia	0–6	_
10	Other Large Shrubs			39–62	
	Cutler's inintfir	FPCU	Enhedra cutleri	20-39	_

	L. 00	Epiloala oalloll	20 00	
sand sagebrush	ARFI2	Artemisia filifolia	4–20	-
fourwing saltbush	ATCA2	Atriplex canescens	4–20	-
sand buckwheat	ERLE9	Eriogonum leptocladon	0–8	-
rubber rabbitbrush	ERNA10	Ericameria nauseosa	0–4	-
Apache plume	FAPA	Fallugia paradoxa	0–4	-
common dunebroom	PAFI4	Parryella filifolia	0–4	-
Greene's rabbitbrush	CHGR6	Chrysothamnus greenei	0–4	-

Animal community

This site is used for grazing by cattle, horses, sheep, and goats.

Hydrological functions

There are no hydrologic features associated with this site.

Wood products

There is no potential for the production of wood products on this site.

Inventory data references

Type locality

Location 1: Coconino County, AZ				
Latitude	36° 10′ 15″			
Longitude	111° 7′ 45″			

Other references

Updates and revisions for this ESD were conducted as part of a 2007-2012 Interagency Technical Assistance Agreement between the Bureau of Indian Affairs–Navajo Region and the NRCS-Arizona.

Contributors

Ken Gishi Kenneth Gishi Larry D. Ellicott

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Kenneth Gishi
Contact for lead author	State Rangeland Management Specialist, NRCS-Arizona State Office, Phoenix, AZ

Date	02/25/2010
Approved by	Stephen E. Cassady
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills: None
- 2. Presence of water flow patterns: None expected due to rapid permeability and very low runoff characteristics of soils.
- 3. Number and height of erosional pedestals or terracettes: No pedestal and terracettes, some mounding around longlived perennial shrubs and grasses
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground ranges from 40-70% and can vary considerably due to the droughty nature of the site. Bare ground may be higher where this site intergrades with active sand dunes.
- 5. Number of gullies and erosion associated with gullies: None.
- 6. Extent of wind scoured, blowouts and/or depositional areas: Uncommon.
- 7. Amount of litter movement (describe size and distance expected to travel): No appreciable movement of woody litter, some fine herbaceous litter movement expected by wind
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Soils associated with this site develop a thin crust (physical or biological crust) resistant to erosion. Expected values of 2-3
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): The surface of soils associated with this site are single grained; loose. Most surface textures are fine sands, but include sand and loamy fine sands.
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: The site is characterized by a mix of shrub canopy (60%), scattered grasses (35%) and forbs (5%). A good mix of perennial bunchgrasses provide the best infiltration on the site.

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Shrubs

Sub-dominant: Cool-season perennial grasses >= warm-season grasses > half-shrubs

Other: Annual forbs > perennial forbs >= annual grasses

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): In normal years mortality is very low for all functional groups. Less than 10% canopy decline in shrubs and perennial grasses. Summer droughts affect warm-season grasses the most and winter droughts affect shrubs and cool-season grasses the most.
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): In normal rainfall years about 350 lbs/ac is expected.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Cheat grass and/or red brome, Russian thistle and other introduced annual forbs
- 17. **Perennial plant reproductive capability:** All plants native to this site are adapted to the climate and are capable of producing seeds, stolons, and/or rhizomes except during the most severe droughts.