

Ecological site R038XA109AZ Loamy Upland 12-16 p.z.

Last updated: 9/05/2019 Accessed: 05/04/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

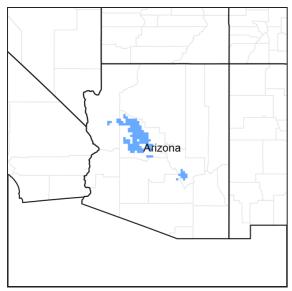


Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 038X–Mogollon Transition South

AZ 38.1 - Lower Mogollon Transition

Elevations range from 3,000 to 4,500 feet and precipitation averages 12 to 16 inches per year. Vegetation includes canotia, one-seed juniper, mesquite, catclaw acacia, jojoba, turbinella oak, ratany, shrubby buckwheat, algerita, skunkbush, tobosa, vine mesquite, bottlebrush squirreltail, grama species, curly mesquite, desert needlegrass, and New Mexico feathergrass. The soil temperature regime is thermic and the soil moisture regime is ustic aridic. This MLRA occurs within the Transition Zone Physiographic Province and is characterized by canyons and structural troughs or valleys. Igneous, metamorphic, and sedimentary rock classes occur on rough mountainous terrain in association with less extensive sediment filled valleys exhibiting little integrated drainage.

Ecological site concept

The Loamy Upland ecological site occurs at the lowest elevations of the interior chaparral zone in the Mogollon Transition area. It occurs on uplands.

These soils are moderately deep to deep (30 to 60 inches), and dark colored in the surface (6 to 12 inches). They are clayey textured, gravelly to very gravelly, and well drained. They have formed in alluvium and colluvium from a

variety of parent materials.

Associated sites

	Limy Upland 12-16" p.z.
R038XA108AZ	Clayey Slopes 12-16" p.z.
R038XA126AZ	Limy Slopes 12-16" p.z.

Similar sites

R040XA120AZ	Clay Loam Upland 10"-13" p.z.
R038XB203AZ	Clay Loam Upland 16-20" p.z.
R041XB204AZ	Clay Loam Upland 8-12" p.z.
R041XC305AZ	Clay Loam Upland 12-16" p.z.

Table 1. Dominant plant species

Tree	Not specified
Shrub	(1) Opuntia engelmannii (2) Calliandra eriophylla
Herbaceous	(1) Bouteloua curtipendula (2) Hilaria belangeri

Physiographic features

The Loamy Upland ecological site occurs at the lowest elevations of the interior chaparral zone in the Mogollon Transition area. It occurs on uplands. It is on gentle slopes, fan terraces, ridgetops, and mesa tops.

Table 2. Representative physiographic features

Landforms	(1) Fan piedmont (2) Mesa (3) Lava flow
Flooding frequency	None
Elevation	914–1,372 m
Slope	15–45%
Aspect	N, E, S

Climatic features

Precipitation in this common resource area averages 12 to 16 inches annually. The winter/summer rainfall ratio ranges from about 60/40 percent in the northwest part of the area to 50/50 percent in the southeast part. Summer rains fall July through September; are from high-intensity, convective thunderstorms. This moisture originates primarily from the Gulf of Mexico, but can come from the remnants of Pacific hurricanes in September. Winter moisture is frontal, originates in the north Pacific, and falls as rain or snow in widespread storms of low intensity and long duration. Snowfall ranges from a trace to 10 inches per year and can occur from November through March. Snow seldom persists for more than a day except on north aspects. May and June are the driest months of the year. Humidity is generally low all year. Average annual air temperatures range from 59 to 70 degrees F (thermic temperature regime). Daytime temperatures in the summer are commonly in the high 90's. Freezing temperatures are common from October through April, usually during the night or early morning hours. The actual precipitation, available moisture, and temperature vary, depending on region, elevation, rain shadow effect, and aspect.

Frost-free period (average)	205 days
Freeze-free period (average)	242 days
Precipitation total (average)	356 mm

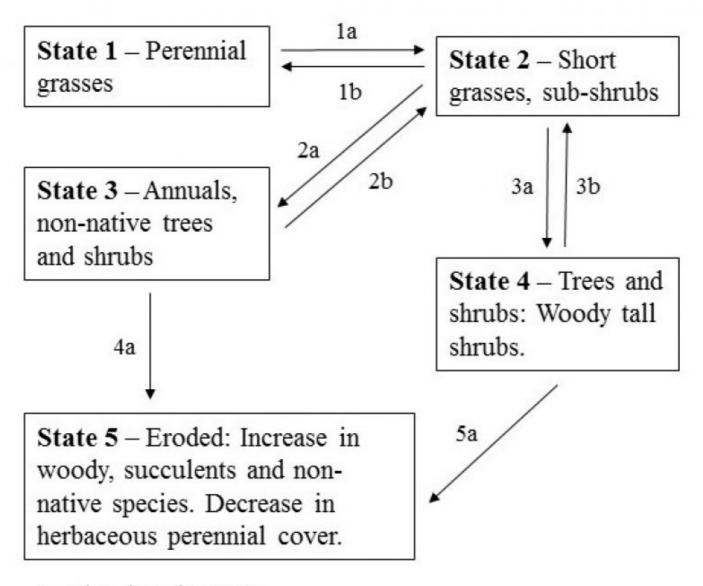
Influencing water features

There are no water features associated with the Loamy Upland ecological site.

Soil features

These soils are moderately deep to deep (30 to 60 inches), and dark colored in the surface (6 to 12 inches). They are clayey textured, gravelly to very gravelly, and well drained. They have formed in alluvium and colluvium from a variety of parent materials. They do not exhibit vertic soil properties (cracking and churning). Soil surfaces can be covered by gravels, cobbles, and/or stones. The erosion hazard is moderate to high where plant or gravel covers are inadequate. Typical taxonomic units mapped on this site include: SSA-627 Mohave County Southern Part MU Whitehouse-131; SSA-637 Yavapai County Western Part MU's Lonti-AbB, LmB, LnC, LoD, LpB, LsC, LtB, LuC & LvE, Balon-AlC, LuC, Wm, Wn, Wo & Wp, Poley-AeB & Wp, Showlow-ShB, Wineg-AnC, LuC, Wm, Wn, Wo & Wp; SSA-639 Black Hills-Sedona Area MU's Altar-419 & Bewearze-422; SSA-697 Mohave County Central Part MU Hosta family-58.

Table 4. Representative soil features


Surface texture	(1) Gravelly clay loam(2) Very gravelly loam(3) Very gravelly clay loam
Family particle size	(1) Clayey
Drainage class	Well drained
Permeability class	Moderately slow to slow
Soil depth	76–152 cm
Surface fragment cover <=3"	15–60%
Surface fragment cover >3"	1–10%
Available water capacity (0-101.6cm)	7.62–19.05 cm
Calcium carbonate equivalent (0-101.6cm)	1–15%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–2
Soil reaction (1:1 water) (0-101.6cm)	7–8.2
Subsurface fragment volume <=3" (Depth not specified)	5–55%
Subsurface fragment volume >3" (Depth not specified)	0–10%

Ecological dynamics

The historic native plant community is dominated by tobosa and other perennial warm-season grasses with a mixture of desert shrubs, half shrubs, succulents, and forbs. This includes a diverse flora of native annual grasses and forbs of both the winter and summer seasons. Periodic wildfires occurred at moderate intervals (15 to 30 years) and helped to maintain a balance between grasses and shrubs. The interactions of drought, fire, and continuous

livestock grazing can, over time, result in the loss of perennial grasses, half shrubs, and suffrutescent forbs on the Loamy Upland ecological site. The lack of fire for very long periods can lead to increases in large shrubs/succulents like prickly pear, and whitethorn acacia. Trees like juniper, paloverde, mesquite, and canotia can increase as well. In some situations non-native annuals can dominate the site. These species can, over time, diminish the soil seedbank of native annual species. Non-native annuals can act to increase the fire frequency of areas of the site near roads and urban areas, where the incidence of man-made fires is high.

State and transition model

- 1a. Fire, drought, CHG
- 2a. CHG, absence of fire
- 3a. Woody species increase due to absence of fire and CHG
- 4a. Accelerated soil erosion may occur where herbaceous plants are absent.
- 5a. Fire, drought, CHG. Loss of perennial herbaceous cover.

Figure 4. MLRA 38.1 (12-16"), Loamy Uplands

State 1 Reference State

Tobosa - Warm Season Grass Community (HNPC)

The historic native plant community is dominated by tobosa and other warm season perennial grasses with a mixture of desert shrubs, half-shrubs, suffrutescent forbs and succulents. A rich flora of native annual forbs and grasses, of both the winter and summer seasons, exist in the plant community. Natural fires, which burned at moderate intervals in this region, helped to maintain a balance between perennial grasses and shrubs.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	404	841	1233
Forb	8	56	269
Shrub/Vine	28	112	224
Tree	_	6	17
Total	440	1015	1743

Table 6. Soil surface cover

Tree basal cover	0%
Shrub/vine/liana basal cover	1-2%
Grass/grasslike basal cover	6-12%
Forb basal cover	0-1%
Non-vascular plants	0%
Biological crusts	1-10%
Litter	10-60%
Surface fragments >0.25" and <=3"	15-60%
Surface fragments >3"	0-15%
Bedrock	0%
Water	0%
Bare ground	10-60%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	_	0-5%	1-10%	0-10%
>0.15 <= 0.3	_	0-2%	5-10%	1-10%
>0.3 <= 0.6	_	0-2%	10-20%	0-5%
>0.6 <= 1.4	_	0-5%	0-5%	0-1%
>1.4 <= 4	0-1%	0-1%	_	_
>4 <= 12	0-1%	-	-	-
>12 <= 24	_	-	-	_
>24 <= 37	_			
>37	_	_	_	_

Figure 6. Plant community growth curve (percent production by month). AZ3811, 38.1 12-16" p.z. all sites. Growth begins in the spring, most growth occurs in the summer..

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	1	7	15	20	22	20	10	5	0	0

State 2 Short Grass State

Community 2.1 Short Grass Community

Tobosa is removed from the plant community over time due to the interactions of fire, continuous grazing and drought. When the canopy cover of tobosa drops below 5% and the distribution of that cover is poor (clumped) then tobosa will not be able to recover on the site. Short grasses; especially curly mesquite and including slender and hairy grama will dominate the herbaceous layer of the plant community. These species fluctuate widely from drought to wet years.

State 3 Exotic Annuals Invaded State

Community 3.1 Exotic Annual Invaded Community

Non-native annual grasses like red brome, wild oats, mediterranean grass (schismus) and cheatgrass can invade and dominate areas of the site. These species can, over time, reduce the seed-bank of native annual grasses and forbs. Their presence can increase the fire frequency (of man made fires) especially where roads and urban areas are adjacent to areas of the site. Repeated fires tend to remove the native shrub, grass and forb canopy.

State 4 Shrub Invaded State

Community 4.1 Shrub Invaded Community

In the absence of fire for long periods of time and with continuous grazing, shrubs like mesquite, paloverde and whitethorn acacia and succulents like prickly pear and banana yucca can increase to dominate the plant community. Trees including oneseed and redberry juniper and canotia can increase also. Perennial grasses and forbs cannot recover in the face of increased shrub competition.

State 5 Eroded State

Community 5.1 Woody Overstory

Shrubs like mesquite, paloverde and whitethorn acacia; trees like juniper and canotia; and succulents like prickly pear and banana yucca can increase to dominate the site. Non-native annual forbs and grasses dominate the under-story. In "El Nino" years herbaceous fuels are sufficient for burning and repeat fires are especially common in areas close to residential zones and roads. Extreme rainfall events coupled with the fire, drought and grazing interaction, can lead to rilling of steep slopes. Compaction of soils can occur with heavy trailing from continuous livestock use. Loss of plant cover after repeated fire can lead to accelerated sheet and rill erosion under these circumstances.

Additional community tables

Table 8. Community 1.1 plant community composition

				Annual Production	Foliar Cover	
Group	Common Name	Symbol	Scientific Name	(Ka/Hactara)	/0/_\	ı

1	Dominant perennial grass	ses	336–673		
	tobosagrass	PLMU3	Pleuraphis mutica	280–560	_
	sideoats grama	BOCU	Bouteloua curtipendula	56–112	
2	Cool season grasses			1–56	
	squirreltail	ELEL5	Elymus elymoides	1–56	
3	Misc. perennial grasses			56–280	
	curly-mesquite	HIBE	Hilaria belangeri	39–168	
	hairy grama	BOHI2	Bouteloua hirsuta	0–56	
	slender grama	BORE2	Bouteloua repens	0–56	_
	purple threeawn	ARPU9	Aristida purpurea	6–56	_
	black grama	BOER4	Bouteloua eriopoda	6–56	
	Parish's threeawn	ARPUP5	Aristida purpurea var. parishii	1–56	
	spidergrass	ARTE3	Aristida ternipes	1–56	
	red grama	BOTR2	Bouteloua trifida	0–22	
	spidergrass	ARTEG	Aristida ternipes var. gentilis	0–17	
	blue grama	BOGR2	Bouteloua gracilis	0–17	
	bush muhly	MUPO2	Muhlenbergia porteri	0–17	_
	Hall's panicgrass	PAHA	Panicum hallii	0–17	
	vine mesquite	PAOB	Panicum obtusum	0–17	
	plains bristlegrass	SEVU2	Setaria vulpiseta	0–17	
	Fendler threeawn	ARPUL	Aristida purpurea var. longiseta	0–11	
	sand dropseed	SPCR	Sporobolus cryptandrus	0–6	
	cane bluestem	BOBA3	Bothriochloa barbinodis	0–6	
	Arizona cottontop	DICA8	Digitaria californica	0–6	
	green sprangletop	LEDU	Leptochloa dubia	0–6	
	fall witchgrass	DICO6	Digitaria cognata	0–2	
	slim tridens	TRMU	Tridens muticus	0–2	
	plains lovegrass	ERIN	Eragrostis intermedia	0–1	
	tanglehead	HECO10	Heteropogon contortus	0–1	
4	Annual grasses	1	Trotor op og sir de la	6–224	
	sixweeks fescue	VUOC	Vulpia octoflora	1–56	
	mucronate sprangeltop	LEPAB	Leptochloa panicea ssp. brachiata	0–28	
	small fescue	VUMI	Vulpia microstachys	0–22	
	sixweeks threeawn	ARAD	Aristida adscensionis	1–22	
	Mexican panicgrass	PAHI5	Panicum hirticaule	0–17	
	Arizona signalgrass	URAR	Urochloa arizonica	0-17	
	Rothrock's grama	BORO2	Bouteloua rothrockii	0-17	
	Eastwood fescue	VUMIC	Vulpia microstachys var. ciliata	0-11	
	witchgrass	PACA6	Panicum capillare	0-6	
	prairie threeawn	AROL	Aristida oligantha	0-6	
	Arizona brome	BRAR4	Bromus arizonicus	0-6	
	feather fingergrass	CHVI4	Chloris virgata	0-2	

	delicate muhly	MUFR	Muhlenbergia fragilis	0–2	-
	littleseed muhly	MUMI	Muhlenbergia microsperma	0–2	_
	canyon cupgrass	ERLE7	Eriochloa lemmonii	0–1	_
	tufted lovegrass	ERPE	Eragrostis pectinacea	0–1	_
	desert lovegrass	ERPEM	Eragrostis pectinacea var. miserrima	0–1	-
	little barley	HOPU	Hordeum pusillum	0–1	_
	Mexican sprangletop	LEFUU	Leptochloa fusca ssp. uninervia	0–1	_
	Bigelow's bluegrass	POBI	Poa bigelovii	0–1	_
	needle grama	BOAR	Bouteloua aristidoides	0–1	_
	sixweeks grama	BOBA2	Bouteloua barbata	0–1	_
Forb					
5	Perennial forbs			6–45	
	largeflower onion	ALMA4	Allium macropetalum	0–6	_
	weakleaf bur ragweed	AMCO3	Ambrosia confertiflora	1–6	_
	bluedicks	DICA14	Dichelostemma capitatum	1–6	_
	slender janusia	JAGR	Janusia gracilis	0–6	_
	desert globemallow	SPAM2	Sphaeralcea ambigua	1–6	_
	brownplume wirelettuce	STPA4	Stephanomeria pauciflora	1–6	_
	Coues' cassia	SECO10	Senna covesii	0–2	_
	Gila manroot	MAGI	Marah gilensis	0–2	_
	lacy tansyaster	MAPI	Machaeranthera pinnatifida	0–2	_
	wishbone-bush	MILAV	Mirabilis laevis var. villosa	0–2	_
	tuber anemone	ANTU	Anemone tuberosa	0–2	_
	perennial rockcress	ARPE2	Arabis perennans	1–2	-
	dense ayenia	AYMI	Ayenia microphylla	0–1	-
	desert marigold	BAMU	Baileya multiradiata	0–1	-
	scarlet spiderling	восо	Boerhavia coccinea	0–1	-
	climbing wartclub	BOSC	Boerhavia scandens	0–1	-
	wavyleaf Indian paintbrush	CAAPM	Castilleja applegatei ssp. martinii	0–1	_
	Arizona wrightwort	CAAR7	Carlowrightia arizonica	0–1	-
	desert mariposa lily	CAKE	Calochortus kennedyi	0–1	-
	sego lily	CANU3	Calochortus nuttallii	0–1	_
	leatherweed	CRPO5	Croton pottsii	0–1	-
	narrowleaf silverbush	ARLA12	Argythamnia lanceolata	0–1	-
	white sagebrush	ARLUM2	Artemisia ludoviciana ssp. mexicana	0–1	_
	New Mexico silverbush	ARNE2	Argythamnia neomexicana	0–1	_
	dwarf desertpeony	ACNA2	Acourtia nana	0–1	_
	brownfoot	ACWR5	Acourtia wrightii	0–1	_
	San Felipe dogweed	ADPO	Adenophyllum porophylloides	0–1	_
	trailing windmills	ALIN	Allionia incarnata	0–1	_
	desert tobacco	NIOB	Nicotiana obtusifolia	0–1	_
	New Mexico groundsel	PANE7	Packera neomexicana	0–1	_
	Oak Creek ranwort	P∆∩I IR	Packera quercetorum	∩_1	_

1 1	Oak Orook ragwort	1 7000	τ αυποτά γαυτουτοιαπτ	V-1	
	toadflax penstemon	PELI2	Penstemon linarioides	0–1	_
	Parry's beardtongue	PEPA24	Penstemon parryi	0–1	_
	desert penstemon	PEPS	Penstemon pseudospectabilis	0–1	_
	orange fameflower	PHAU13	Phemeranthus aurantiacus	0–1	_
	slender poreleaf	POGR5	Porophyllum gracile	0–1	_
	glandleaf milkwort	POMA7	Polygala macradenia	0–1	_
	canaigre dock	RUHY	Rumex hymenosepalus	0–1	_
	twinleaf senna	SEBA3	Senna bauhinioides	0–1	_
	ragged nettlespurge	JAMA	Jatropha macrorhiza	0–1	_
	longflower tube tongue	JULO3	Justicia longii	0–1	_
	Wright's deervetch	LOWR	Lotus wrightii	0–1	_
	fleabane	ERIGE2	Erigeron	0–1	_
	desert trumpet	ERIN4	Eriogonum inflatum	0–1	_
	Mojave spurge	EUSC6	Euphorbia schizoloba	0–1	_
	southwestern mock vervain	GLGO	Glandularia gooddingii	0–1	_
	desert rosemallow	HICO	Hibiscus coulteri	0–1	_
	Indian rushpea	HOGL2	Hoffmannseggia glauca	0–1	_
	plains blackfoot	MELE2	Melampodium leucanthum	0–1	_
	Lemmon's ragwort	SELE8	Senecio lemmonii	0–1	_
	New Mexico fanpetals	SINE	Sida neomexicana	0–1	_
	silverleaf nightshade	SOEL	Solanum elaeagnifolium	0–1	_
	branched noseburn	TRRA5	Tragia ramosa	0–1	_
	Louisiana vetch	VILUL2	Vicia ludoviciana ssp. ludoviciana	0–1	_
	Gregg's prairie clover	DAGR2	Dalea greggii	0–1	_
	Cooley's bundleflower	DECO2	Desmanthus cooleyi	0–1	_
	desert larkspur	DEPA	Delphinium parishii	0–1	_
	tall mountain larkspur	DESC	Delphinium scaposum	0–1	_
6	Annual forbs			2–224	
	bristly fiddleneck	AMTE3	Amsinckia tessellata	0–56	_
	Arizona popcornflower	PLAR	Plagiobothrys arizonicus	0–56	_
	California poppy	ESCAM	Eschscholzia californica ssp. mexicana	0–28	_
	longleaf false goldeneye	HELOA2	Heliomeris longifolia var. annua	1–28	_
	Gordon's bladderpod	LEGO	Lesquerella gordonii	0–17	_
	Coulter's lupine	LUSP2	Lupinus sparsiflorus	0–17	_
	coastal bird's-foot trefoil	LOSA	Lotus salsuginosus	0–17	_
	desert Indianwheat	PLOV	Plantago ovata	0–17	_
	Coulter's spiderling	BOCO2	Boerhavia coulteri	0–17	_
	carelessweed	AMPA	Amaranthus palmeri	0–11	_
	exserted Indian paintbrush	CAEXE	Castilleja exserta ssp. exserta	0–11	_
	thelypody	THELY	Thelypodium	0–11	_
	Arizona poppy	KAGR	Kallstroemia grandiflora	0–11	_
	western tansymustard	DEPI	Descurainia pinnata	0–11	_
	miniatura woollvetar	EBUI3	Friaetrum diffueum	∩_11	_

i	mmataro woonystar	בואטוב	Liidotiaiii aiiidodiii	V-11	_
	shaggyfruit pepperweed	LELA	Lepidium lasiocarpum	0–6	-
	foothill deervetch	LOHU2	Lotus humistratus	0–6	_
	desertparsley	LOMAT	Lomatium	0–6	-
	slender goldenweed	MAGR10	Machaeranthera gracilis	0–6	-
	tanseyleaf tansyaster	MATA2	Machaeranthera tanacetifolia	0–6	-
	woolly tidestromia	TILA2	Tidestromia lanuginosa	0–6	_
	New Mexico plumeseed	RANE	Rafinesquia neomexicana	0–6	
	woolly plantain	PLPA2	Plantago patagonica	0–6	
	phacelia	PHACE	Phacelia	0–6	_
	pitseed goosefoot	CHBE4	Chenopodium berlandieri	0–6	-
	fivewing spiderling	BOIN	Boerhavia intermedia	0–6	-
	milkvetch	ASTRA	Astragalus	0–6	_
	New Mexico thistle	CINE	Cirsium neomexicanum	0–2	
	miner's lettuce	CLPEP	Claytonia perfoliata ssp. perfoliata	0–2	_
	hyssopleaf sandmat	CHHY3	Chamaesyce hyssopifolia	0–2	
	American wild carrot	DAPU3	Daucus pusillus	0–2	
	purslane	PORTU	Portulaca	0–2	
	sawtooth sage	SASU7	Salvia subincisa	0–2	_
	spreading fanpetals	SIAB	Sida abutifolia	0–2	_
	sleepy silene	SIAN2	Silene antirrhina	0–2	_
	Thurber's pepperweed	LETH2	Lepidium thurberi	0–2	_
	crestrib morning-glory	IPCO2	Ipomoea costellata	0–2	_
	wedgeleaf draba	DRCU	Draba cuneifolia	0–2	_
	spurge	EUPHO	Euphorbia	0–2	_
	sorrel buckwheat	ERPO4	Eriogonum polycladon	0–2	-
	Texas stork's bill	ERTE13	Erodium texanum	0–1	I
	star gilia	GIST	Gilia stellata	0–1	I
	flatcrown buckwheat	ERDE6	Eriogonum deflexum	0–1	I
	spreading fleabane	ERDI4	Erigeron divergens	0–1	-
	redstar	IPCO3	Ipomoea coccinea	0–1	1
	ivyleaf morning-glory	IPHE	Ipomoea hederacea	0–1	_
	California goldfields	LACA7	Lasthenia californica	0–1	-
	whitestem blazingstar	MEAL6	Mentzelia albicaulis	0–1	1
	green carpetweed	MOVE	Mollugo verticillata	0–1	-
	desert evening primrose	OEPR	Oenothera primiveris	0–1	-
	Florida pellitory	PAFL3	Parietaria floridana	0–1	I
	combseed	PECTO	Pectocarya	0–1	_
	manybristle chinchweed	PEPA2	Pectis papposa	0–1	_
	Arizona lupine	LUAR4	Lupinus arizonicus	0–1	_
	miniature lupine	LUBI	Lupinus bicolor	0–1	
	Fendler's desertdandelion	MAFE	Malacothrix fendleri	0–1	
	creamcups	PLCA5	Platystemon californicus	0–1	
	woollyhead neststraw	STMI2	Stylocline micropoides	0–1	_
	i e e e e e e e e e e e e e e e e e e e			i l	

	sand fringepod	THCU	Thysanocarpus curvipes	0–1	_
	desert unicorn-plant	PRAL4	Proboscidea althaeifolia	0–1	_
	doubleclaw	PRPA2	Proboscidea parviflora	0–1	_
	chia	SACO6	Salvia columbariae	0–1	_
	sacred thorn-apple	DAWR2	Datura wrightii	0–1	1
	Esteve's pincushion	CHST	Chaenactis stevioides	0–1	-
	scrambled eggs	COAU2	Corydalis aurea	0–1	-
	cryptantha	CRYPT	Cryptantha	0–1	_
	brittle spineflower	CHBR	Chorizanthe brevicornu	0–1	_
	yellow tackstem	CAPA7	Calycoseris parryi	0–1	-
	white tackstem	CAWR	Calycoseris wrightii	0–1	-
	hoary bowlesia	BOIN3	Bowlesia incana	0–1	ı
	annual agoseris	AGHE2	Agoseris heterophylla	0–1	1
Shrub	/Vine				
7	Evergreen shrubs			1–56	
	Sonoran scrub oak	QUTU2	Quercus turbinella	0–11	ı
	jojoba	SICH	Simmondsia chinensis	0–11	1
	redberry buckthorn	RHCR	Rhamnus crocea	0–1	ı
	longleaf jointfir	EPTR	Ephedra trifurca	0–1	-
	red barberry	MAHA4	Mahonia haematocarpa	0–1	1
	algerita	MATR3	Mahonia trifoliolata	0–1	1
8	Miscellaneous large shrub	s		1–22	
	catclaw acacia	ACGR	Acacia greggii	1–6	-
	blue paloverde	PAFL6	Parkinsonia florida	0–6	-
	yellow paloverde	PAMI5	Parkinsonia microphylla	0–6	_
	whitethorn acacia	ACCO2	Acacia constricta	0–2	-
	whitethorn acacia	ACCOP9	Acacia constricta var. paucispina	0–1	_
	littleleaf sumac	RHMI3	Rhus microphylla	0–1	_
	skunkbush sumac	RHTR	Rhus trilobata	0–1	_
	lotebush	ZIOBC	Ziziphus obtusifolia var. canescens	0–1	_
	desert sweet	CHMI2	Chamaebatiaria millefolium	0–1	_
	ocotillo	FOSP2	Fouquieria splendens	0–1	_
	snapdragon penstemon	KEANM	Keckiella antirrhinoides ssp. microphylla	0–1	-
	creosote bush	LATR2	Larrea tridentata	0–1	_
	water jacket	LYAN	Lycium andersonii	0–1	
	Berlandier's wolfberry	LYBE	Lycium berlandieri	0–1	_
	Arizona desert-thorn	LYEX	Lycium exsertum	0–1	_
	catclaw mimosa	MIACB	Mimosa aculeaticarpa var. biuncifera	0–1	_
9	Dominant half shrubs			17–112	
	fairyduster	CAER	Calliandra eriophylla	11–67	_
	bastardsage	ERWR	Eriogonum wrightii	1–17	_
	littleleaf ratany	KRER	Krameria erecta	1–11	_
	rough menodora	MESC	Menodora scahra	∩_11	_

	desert zinnie	7140	Zinnia accesso	0-11	
	desert zinnia	ZIAC	Zinnia acerosa	0-6	
	Eastern Mojave buckwheat		Eriogonum fasciculatum	0–1	
	prairie acacia	ACAN	Acacia angustissima	0–1	
	Coulter's brickellbush	BRCO	Brickellia coulteri	0–1	
10	Succulents			6–62	
	cactus apple	OPEN3	Opuntia engelmannii	6–22	_
	tulip pricklypear	OPPH	Opuntia phaeacantha	0–11	-
	banana yucca	YUBA	Yucca baccata	0–6	_
	saguaro	CAGI10	Carnegiea gigantea	0–2	_
	devil's cholla	GRKU	Grusonia kunzei	0–2	-
	Christmas cactus	CYLE8	Cylindropuntia leptocaulis	0–2	-
	walkingstick cactus	CYSP8	Cylindropuntia spinosior	0–2	_
	common sotol	DAWH2	Dasylirion wheeleri	0–1	_
	pinkflower hedgehog cactus	ECBO2	Echinocereus bonkerae	0–1	-
	Arizona hedgehog cactus	ECCOA	Echinocereus coccineus var. arizonicus	0–1	_
	Engelmann's hedgehog cactus	ECEN	Echinocereus engelmannii	0-1	_
	redspine fishhook cactus	ECER2	Echinomastus erectocentrus	0–1	_
	pinkflower hedgehog cactus	ECFA	Echinocereus fasciculatus	0-1	-
	spinystar	ESVI2	Escobaria vivipara	0–1	_
	candy barrelcactus	FEWI	Ferocactus wislizeni	0–1	_
	Graham's nipple cactus	MAGR9	Mammillaria grahamii	0–1	_
	sacahuista	NOMI	Nolina microcarpa	0–1	_
	buck-horn cholla	CYAC8	Cylindropuntia acanthocarpa	0–1	_
	jumping cholla	CYFU10	Cylindropuntia fulgida	0–1	_
	goldenflower century plant	AGCH2	Agave chrysantha	0–1	_
	Palmer's century plant	AGPA3	Agave palmeri	0–1	_
	soaptree yucca	YUEL	Yucca elata	0–1	_
	purple pricklypear	OPMA8	Opuntia macrocentra	0–1	_
11	Increaser half-shrubs	<u> </u>	<u>'</u>	2–28	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	1–22	_
	burroweed	ISTE2	Isocoma tenuisecta	0–1	_
	yerba de pasmo	BAPT	Baccharis pteronioides	0–1	_
	button brittlebush	ENFR	Encelia frutescens	0–1	_
	turpentine bush	ERLA12	Ericameria laricifolia	0–1	_
	threadleaf snakeweed	GUMI	Gutierrezia microcephala	0–1	_
Tree		1	Salonozia miorocopnia	0-1	
12	Trees		1	0–17	
	redberry juniper	JUCO11	Juniperus coahuilensis	0–6	
	oneseed juniper	JUMO	Juniperus monosperma	0–6	
	Utah juniper	JUOS	Juniperus osteosperma	0-6	
	velvet mesauite	PRVE	Prosopis velutina	0-6	

ı	1		<i>t</i>		
	western honey mesquite	PRGLT	Prosopis glandulosa var. torreyana	0–2	-
	crucifixion thorn	CAHO3	Canotia holacantha	0–2	_

Animal community

The Loamy Upland ecological site is suitable for grazing year-round, and is easily traversed by livestock. Tobosa is very unpalatable and will be the last perennial grass species to be used on this site. Livestock grazing use is concentrated near trails, roads, and waters. The site is susceptible to erosion in overgrazed areas like bed-grounds, livestock trails, and slopes adjacent to water. The site has good habitat diversity for a variety of desert wildlife species. It is home mainly to small mammals and birds and their associated predators. It is a foraging area for larger mammals like deer and javalina. Water developments are very important to both livestock and wildlife on this site.

Hydrological functions

The Loamy Upland ecological site has a smooth to rough surface with variable covers of gravels and stones. Due to clayey textured soils it is a good producer of runoff. It produces exceptional runoff when heavy rain falls on snow or moist soils.

Recreational uses

The Loamy Upland ecological site is used for hunting, camping, horseback riding, backpacking, rock hounding, and photography.

Wood products

Limited fuel-wood for campfires and branding fires. In areas where mesquite or juniper has increased there may be more wood available for fuel and for fence stays.

Other products

There is some harvest of food plants like prickly pear tunas, jojoba nuts, wild onions, and grass nuts. There is limited harvest of medicinal plants like Mormon tea. There is limited harvest of fibers from banana yucca. Clay is available for pot making.

Type locality

Location 1: Yavapai County, AZ				
Township/Range/Section T11N R2E S8				
General legal description	North side of Highway 69 right-of-way, Cordes Junction to Mayer, Yavapai County.			

Other references

Similar to Community type 5 of TES Map Unit # 370 on the Prescott National Forest.

Contributors

Dan Robinett Larry D. Ellicott

Approval

Scott Woodall, 9/05/2019

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Karlynn Huling
Contact for lead author	NRCS Flagstaff Area Office
Date	05/19/2006
Approved by	S. Cassady
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Ind	dicators
1.	Number and extent of rills: Some rills may form due to loamy surface textures, slow permeability, and medium runoff, especially on steeper slopes.
2.	Presence of water flow patterns: Water flow patterns may be common due to slow permeability and medium runoff, especially on steeper slopes.
3.	Number and height of erosional pedestals or terracettes: Some pedestals and terracettes may occur, but they should be very short.
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground should not exceed 25 percent. The Loamy Upland ecological site has an average available water capacity of 7 inches, so it has a moderate to high potential for the production of plant cover. Sites with a cover of rock fragments will have less bare ground. Drought may cause an increase in bare ground.
5.	Number of gullies and erosion associated with gullies: None
6.	Extent of wind scoured, blowouts and/or depositional areas: None
7.	Amount of litter movement (describe size and distance expected to travel): Herbaceous and fine woody litter will be transported in water flow pathways. Coarse woody litter will remain under shrub canopies.

8. Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Surface soil stability values average 5 both under plant canopies and in the interspaces. Surface textures are mostly sandy loam, loam, or sandy clay loam. Often the surface horizon is gravelly, but sometimes not. When well vegetated, these soils have a moderate to high resistance to both water and wind erosion.

9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Soil surface structure is either granular (weak to moderate, fine to medium) or platy (weak, medium to thick). Surface thickness is 2 to 3 inches. Color is variable depending upon parent material. 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: The Loamy Upland ecological site is characterized by a relatively even distribution of mostly grasses with a few shrubs and forbs. One area had 30 percent canopy cover with overlapping layers of plants (15 percent grass, 5 percent forbs, 15 percent shrubs). Basal cover was 1 percent (grass only). Both canopy and basal cover values decrease during prolonged droughts. This type of plant community is highly effective at capturing and storing precipitation. 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): Due to loam and clay loam textures, these soils may be easily compacted when there are no rock fragments in the surface horizons. Some surface horizons are naturally platy. 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): Dominant: none Sub-dominant: warm-season bunchgrasses = warm-season colonizing grasses shrubs cool season bunchgrasses Other: Minor: forbs Trace: cacti Agave family = annual grasses Additional: 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or **decadence**): All plant functional groups are adapted to survival in all years except during the most severe droughts. Severe winter droughts affect shrubs and trees the most. Severe summer droughts affect grasses the most. 14. Average percent litter cover (%) and depth (in): Mostly herbaceous litter with some woody litter. Litter amounts increase during the first few years of drought, then decrease in later years. 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): 500 to 575 pounds per acre (dry weight) in drought years, 575 to 750 pounds per acre in median years, 750 to 850 pounds per acre in wet years. 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not

invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Broom snakeweed, prickly pear cactus (Opuntia), cholla cactus (Cylindropuntia), turbinella oak, desert ceanothus, wait-a-bit, catclaw acacia, and shrubby buckwheat are all native to the Loamy Upland ecological site, but have the potential to increase and dominate the area after heavy grazing and/or fire exclusion. Juniper (Juniperus) and pinyon pine (Pinus) species are native to neighboring sites and can invade the site after heavy grazing and/or fire exclusion. Redstem filaree, purslane (Portulaca), and spurge (Euphorbia) are exotic forbs (some species of Portulaca and Euphorbia are native) that may invade the site after heavy grazing, soil disturbance, or fire. Red brome is an exotic annual grass that may invade the site after heavy grazing, soil disturbance, or fire.

17. **Perennial plant reproductive capability:** All plants native to the Loamy Upland ecological site are adapted to the climate and are capable of producing seeds, stolons, and rhizomes in more years except during the most severe droughts.