

Ecological site R040XA127AZ Gypsum Slopes 10"-13" p.z.

Accessed: 05/17/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 040X–Sonoran Basin and Range

AZ 40.1 – Upper Sonoran Desert

Elevations range from 2000 to 3200 feet and precipitation averages 10 to 13 inches per year. Vegetation includes saguaro, palo verde, mesquite, creosotebush, triangle bursage, prickly pear, cholla, limberbush, wolfberry, bush muhly, threeawns, ocotillo, and globe mallow. The soil temperature regime is thermic and the soil moisture regime is typic aridic. This unit occurs within the Basin and Range Physiographic Province and is characterized by numerous mountain ranges that rise abruptly from broad, plain-like valleys and basins. Igneous and metamorphic rock classes dominate the mountain ranges and sediments filling the basins represent combinations of fluvial, lacustrine, colluvial and alluvial deposits.

Associated sites

R040XA110AZ	Limy Slopes 10"-13" p.z.	
R040XA111AZ	Limy Upland 10"-13" p.z.	
R040XA126AZ	Gypsum Upland 10"-13" p.z.	

Similar sites

R041XB219AZ	Gypsum Upland 8-12" p.z.
F041XB218AZ	Sandy Bottom 8-12" pz. woodland

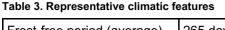
Table 1. Dominant plant species

Tree	e (1) Parkinsonia microphylla		
	(1) Larrea tridentata (2) acacia constricta		
Herbaceous	(1) Muhlenbergia porteri (2) aristida purpurea var. nealleyi		

Physiographic features

This site occurs in the upper elevations of the Sonoran Desert province in southern Arizona. It occurs on fan terraces, hill-slopes and ridge-tops formed on relict lacustrine (lake bed) sediments. It occurs in the Gila and San Pedro river valleys.

Landforms	(1) Hill(2) Fan remnant(3) Ridge
Flooding frequency	None
Ponding frequency	None
Elevation	792–1,097 m
Slope	15–55%
Aspect	N, E, S


Climatic features

Precipitation in the sub resource area ranges from 10 to 13 inches in the southern part, along the Mexican border with elevations from about 1900 to 3200 feet. Precipitation in the northern part of the resource area ranges from 11 to 14 inches with elevations from about 1700 to 3500 feet. Winter-summer rainfall ratios range from 40%-60% in the southern portions of the land resource unit, to 50%-50% in the central portions, to 60%-40% in the northern part of the land resource unit. As one moves from east to west in this resource area rains become slightly more unpredictable and variable with Coefficients of Variation of annual rainfall equal to 29% at Tucson and 36% at Carefree. Summer rains fall July through Sept., originate in the Gulf of Mexico, and are convective, usually brief, intense thunderstorms. Cool season moisture tends to be frontal, originating in the Pacific and Gulf of California. This winter precipitation falls in widespread storms with long duration and low intensity. Snow is rare and seldom lasts more than an hour or two. May and June are the driest months of the year. Humidity is generally very low.

Winter temperatures are mild, with very few days recording freezing temperatures in the morning. Summer temperatures are warm to hot, with several days in June and July exceeding 105 degrees F.

Both the spring and the summer growing seasons are equally important for perennial grass, forb and shrub growth. Cool and warm season annual forbs and grasses can be common in their respective seasons with above average rainfall. Perennial forage species can remain green throughout the year with available moisture.

Frost-free period (average)	265 days
Freeze-free period (average)	0 days
Precipitation total (average)	330 mm

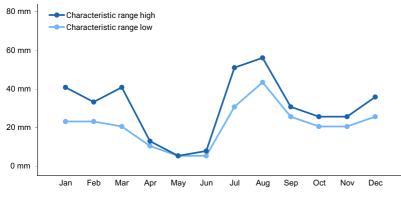


Figure 1. Monthly precipitation range

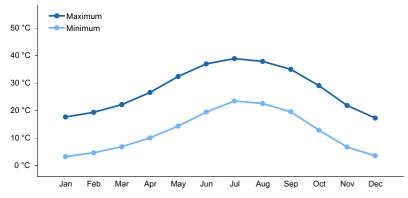


Figure 2. Monthly average minimum and maximum temperature

Influencing water features

There are no water features associated with this site.

Soil features

These soils are well drained, variable in texture, stratified and high in soluble gypsum (5-30% by volume). They are moderately deep to deep and underlain in places by gypsum. Coarse fragments in the soil profile are usually large gypsum crystals. These soils have formed in relict lacustrine deposits. Soil series mapped on this site include Contention, Ugyp, Whitecliff and haplogypsids.

NOT CURRENTLY CORRELATED to any Soil in an AZ SSA.

Table 4. Representative soil features

Surface texture	(1) Silt loam(2) Fine sandy loam(3) Clay
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained
Permeability class	Moderately rapid to slow
Soil depth	152 cm
Surface fragment cover <=3"	0–50%
Surface fragment cover >3"	0–10%
Available water capacity (0-101.6cm)	11.94–19.3 cm
Calcium carbonate equivalent (0-101.6cm)	0–20%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–2
Soil reaction (1:1 water) (0-101.6cm)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–30%
Subsurface fragment volume >3" (Depth not specified)	0–5%

Ecological dynamics

The plant communities found on an ecological site are naturally variable. Composition and production will vary with yearly conditions, location, aspect and the natural variability of the soils. The Historical Climax Plant Community represents the natural potential plant community found on relict or relatively undisturbed areas of this site. Other plant communities described here represent plant communities that are known to occur when the site is disturbed by factors such as fire, grazing and drought.

Production data provided in this site description is standardized to air dry weight at the end of the summer growing season. The plant communities described in this site description are based on near normal rainfall years. NRCS uses a Similarity Index to compare existing plant communities to the plant communities described here. Similarity index is determined by comparing the production and composition of a plant community to the production and composition described in the site description. To determine similarity index, compare the production (air dry weight) of each species to that shown in the plant community description. For each species, count no more than the maximum amount shown for the species, and for each group, count no more than the amount shown for that group. Divide the resulting total by the total, normal year, production shown in the plant community description. If the rainfall has been significantly above or below normal, use the total production shown for above or below normal years. If the field data is not collected at the end of the summer growing season, then the field data must be corrected to the end of year production before comparing it to the site description. The growth curve can be used as a guide for estimating production at the end of the summer growing season.

The historic native state includes the native plant communities that occur on the site, including the historic climax plant community. This state includes other plant communities that naturally occupy the site following fire, drought, flooding, herbivores and other natural disturbances. The historic climax plant community represents the natural climax community that eventually reoccupies the site with proper management and a return to near normal conditions and/or equilibrium.

State and transition model

MLRA 40-1 (10-13"), Gypsum slopes

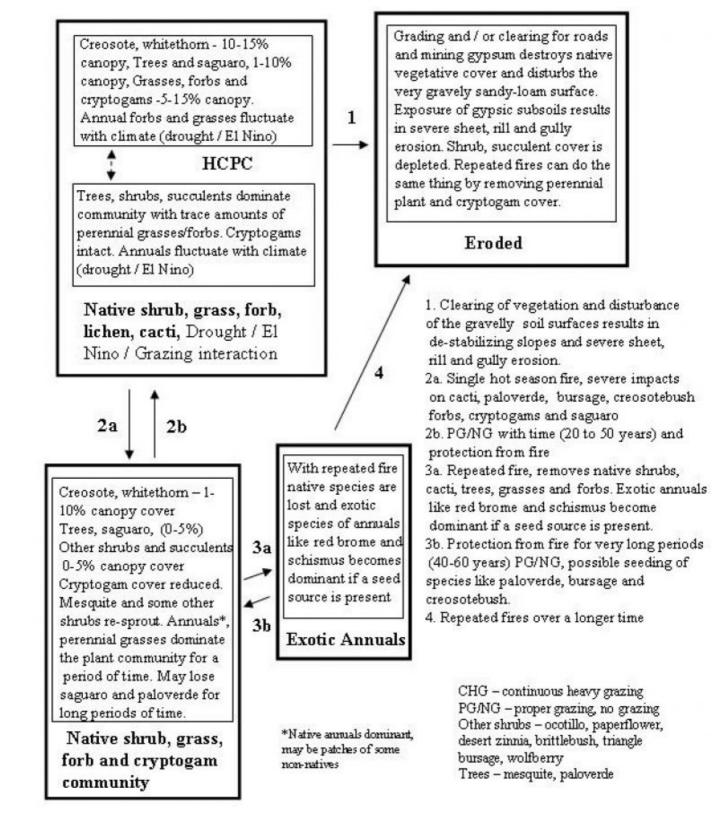


Figure 3. Gypsum slopes 10-13" pz

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community This plant community is dominated by littleleaf paloverde, creosote bush and whitethorn acacia. Annual grasses and forbs are an important part of the plant community. Perennial grasses usually only occur on north hill slopes. Cryptogams are very common on this site, often completely colonizing outcrops of gypsum. The site is extremely susceptible to sheet, rill and gully erosion due to high concentrations of soluble gypsum in the surface soil; once the surface soil has been disturbed.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Shrub/Vine	152	280	471
Grass/Grasslike	13	90	224
Forb	4	45	140
Tree	11	34	112
Total	180	449	947

Table 6. Soil surface cover

Tree basal cover	0-1%
Shrub/vine/liana basal cover	1%
Grass/grasslike basal cover	0-1%
Forb basal cover	0-1%
Non-vascular plants	0%
Biological crusts	5-60%
Litter	5-35%
Surface fragments >0.25" and <=3"	15-45%
Surface fragments >3"	1-15%
Bedrock	0-5%
Water	0%
Bare ground	15-80%

Table 7. Canopy structure (% cover)

Height Above Ground (M)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.15	-	0-1%	0-5%	1-15%
>0.15 <= 0.3	-	0-1%	0-10%	0-5%
>0.3 <= 0.6	-	0-2%	0-5%	0-1%
>0.6 <= 1.4	-	2-5%	-	_
>1.4 <= 4	0-5%	0-2%	_	_
>4 <= 12	_	_	_	_
>12 <= 24	_	_	-	_
>24 <= 37	_	_	-	_
>37	_	_	-	_

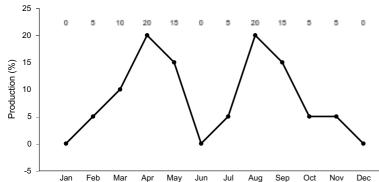


Figure 5. Plant community growth curve (percent production by month). AZ4013, 40.1 10-13" p.z. other sites. Growth begins in the late winter, goes semi-dormant in the drought period of late May through early July, growth continues in the summer through early fall.

State 2 Native shrubs, cacti and fire

Community 2.1 Native shrubs, cacti and fire

This state occurs where the native tree, cacti and shrub cover has been impacted by a single hot season fire. This will occur only in El Nino years when annual forbs and grasses make enough fuel for a fire. Areas of this site will not burn completely due to patches of soil dominated by gypsum outcrop and high cryptogam covers which will not have fine fuel. The fire impacts paloverde, saguaro and other cacti species. Shrubs like creosote and whitethorn may sprout and recover from the fire.

State 3 Exotic annuals

Community 3.1 Exotic annuals

This state occurs where non-native annuals have invaded the native plant community. Species like red brome, schismus and native annuals dominate the understory of the plant community. Areas of the site adjacent urban areas and near heavily travelled roads may burn more often due to increased chance of ignition.

State 4 Eroded

Community 4.1 Eroded

This state occurs where the site has been graded, bladed or mined and the soil surface (gravelly sandyloam) has been disturbed. The subsurface is extremely erodible due to high concentrations of souble gypsum in the soil profile. Steep slopes also contribute to rilling and gully formation.

Additional community tables

Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)	
Grass	Grass/Grasslike					
1	Dominant perennial grasses			11–90		
	purple threeawn	6–56	-			
	hush muhlv	MLIPO2	Muhlenhergia porteri	6_17	_	

	Such many		manionisorgia porton	v ''	
	slim tridens	TRMU	Tridens muticus	1–17	-
	tobosagrass	PLMU3	Pleuraphis mutica	0–11	-
	spike dropseed	SPCO4	Sporobolus contractus	0–11	-
	Parish's threeawn	ARPUP5	Aristida purpurea var. parishii	0–11	-
	big sacaton	SPWR2	Sporobolus wrightii	0–6	-
	alkali sacaton	SPAI	Sporobolus airoides	0–6	-
2	Misc. perennial grasses	s		1–22	
	low woollygrass	DAPU7	Dasyochloa pulchella	1–11	-
	nineawn pappusgrass	ENDE	Enneapogon desvauxii	0–11	-
	blue threeawn	ARPUN	Aristida purpurea var. nealleyi	0–6	_
	spidergrass	ARTE3	Aristida ternipes	0–6	_
	spidergrass	ARTEG	Aristida ternipes var. gentilis	0–6	_
	whiplash pappusgrass	PAVA2	Pappophorum vaginatum	0–2	_
	sand dropseed	SPCR	Sporobolus cryptandrus	0–2	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	0–2	_
	false Rhodes grass	TRCR9	Trichloris crinita	0–2	_
	burrograss	SCBR2	Scleropogon brevifolius	0–1	-
	plains bristlegrass	SEVU2	Setaria vulpiseta	0–1	-
	Arizona cottontop	DICA8	Digitaria californica	0–1	-
3	Annual grasses	1		1–112	
	sixweeks threeawn	ARAD	Aristida adscensionis	1–56	-
	sixweeks grama	BOBA2	Bouteloua barbata	0–56	-
	prairie threeawn	AROL	Aristida oligantha	0–28	_
	needle grama	BOAR	Bouteloua aristidoides	0–22	-
	mucronate sprangeltop	LEPAB	Leptochloa panicea ssp. brachiata	0–17	_
	Rothrock's grama	BORO2	Bouteloua rothrockii	0–11	_
	sixweeks fescue	VUOC	Vulpia octoflora	0–11	-
	Mexican panicgrass	PAHI5	Panicum hirticaule	0–6	_
	Bigelow's bluegrass	POBI	Poa bigelovii	0–2	_
	Arizona signalgrass	URAR	Urochloa arizonica	0–2	-
	canyon cupgrass	ERLE7	Eriochloa lemmonii	0–2	_
	desert lovegrass	ERPEM	Eragrostis pectinacea var. miserrima	0–2	_
	tufted lovegrass	ERPEP2	Eragrostis pectinacea var. pectinacea	0–2	_
	Mexican sprangletop	LEFUU	Leptochloa fusca ssp. uninervia	0–1	_
	Arizona brome	BRAR4	Bromus arizonicus	0–1	_
	delicate muhly	MUFR	Muhlenbergia fragilis	0–1	_
	littleseed muhly	MUMI	Muhlenbergia microsperma	0–1	_
Forb	1				
4	Perennial forbs			3–28	
	lacy tansyaster	MAPIP4	Machaeranthera pinnatifida ssp. pinnatifida var. pinnatifida	1–11	-
	desert trumpet	ERIN4	Eriogonum inflatum	1–11	_
	brownplume wirelettuce	STPA4	Stephanomeria pauciflora	1–11	-
	desert alohemallow	SPAM2	Sohaeralcea ambiqua	0_6	_

	400011 91000111411011	0.,	opinacialoca amoigua	~~_	
	Parry's false prairie- clover	MAPA7	Marina parryi	0–2	-
	wishbone-bush	MILAV	Mirabilis laevis var. villosa	0–2	_
	weakleaf bur ragweed	AMCO3	Ambrosia confertiflora	0–2	-
	dwarf desertpeony	ACNA2	Acourtia nana	0–2	-
	stinging serpent	CESI	Cevallia sinuata	0–2	_
	whitemargin sandmat	CHAL11	Chamaesyce albomarginata	0–1	_
	leatherweed	CRPOP	Croton pottsii var. pottsii	0–1	_
	brownfoot	ACWR5	Acourtia wrightii	0–1	_
	trailing windmills	ALIN	Allionia incarnata	0–1	_
	tuber anemone	ANTU	Anemone tuberosa	0–1	_
	dense ayenia	AYMI	Ayenia microphylla	0–1	_
	hairyseed bahia	BAAB	Bahia absinthifolia	0–1	_
	desert marigold	BAMU	Baileya multiradiata	0–1	_
	desert tobacco	NIOB	Nicotiana obtusifolia	0–1	_
	Coues' cassia	SECO10	Senna covesii	0–1	_
	silverleaf nightshade	SOEL	Solanum elaeagnifolium	0–1	_
	San Pedro daisy	LAPO4	Lasianthaea podocephala	0–1	_
	rue of the mountains	THTE2	Thamnosma texana	0–1	_
5	Annual forbs			1–112	
	phacelia	PHACE	Phacelia	0–28	_
	Coulter's lupine	LUSP2	Lupinus sparsiflorus	0–22	_
	California poppy	ESCAM	Eschscholzia californica ssp. mexicana	0–22	_
	bristly fiddleneck	AMTE3	Amsinckia tessellata	0–17	_
	western tansymustard	DEPI	Descurainia pinnata	0–17	_
	flatcrown buckwheat	ERDE6	Eriogonum deflexum	1–11	_
	miniature woollystar	ERDI2	Eriastrum diffusum	0–11	_
	exserted Indian paintbrush	CAEXE	Castilleja exserta ssp. exserta	0–11	_
	combseed	PECTO	Pectocarya	0–11	_
	manybristle chinchweed	PEPA2	Pectis papposa	0–11	_
	desert Indianwheat	PLOV	Plantago ovata	0–11	_
	lyreleaf jewelflower	STCAA	Streptanthus carinatus ssp. arizonicus	0–6	_
	thelypody	THELY	Thelypodium	0–6	_
	slender goldenweed	MAGR10	Machaeranthera gracilis	0–6	_
	cryptantha	CRYPT	Cryptantha	0–6	_
	Gordon's bladderpod	LEGO	Lesquerella gordonii	0–6	_
	shaggyfruit pepperweed	LELA	Lepidium lasiocarpum	0–6	_
	intermediate pepperweed	LEVIM	Lepidium virginicum var. medium	0–6	_
	coastal bird's-foot trefoil	LOSAB	Lotus salsuginosus var. brevivexillus	0–6	_
	Nuttall's povertyweed	MONU	Monolepis nuttalliana	0–6	
	wheelscale saltbush	ATEL	Atriplex elegans	0–6	_

	Coulter's spiderling	BOCO2	Boerhavia coulteri	0–6	_
	carelessweed	AMPA	Amaranthus palmeri	0–6	_
	brittle spineflower	CHBR	Chorizanthe brevicornu	0–6	_
	hyssopleaf sandmat	СННҮ3	Chamaesyce hyssopifolia	0–2	_
	Esteve's pincushion	CHST	Chaenactis stevioides	0–2	_
	fringed redmaids	CACI2	Calandrinia ciliata	0–2	_
	white tackstem	CAWR	Calycoseris wrightii	0–2	_
	green carpetweed	MOVE	Mollugo verticillata	0–2	_
	hairy prairie clover	DAMO	Dalea mollis	0–2	_
	American wild carrot	DAPU3	Daucus pusillus	0–2	_
	sorrel buckwheat	ERPO4	Eriogonum polycladon	0–2	_
	Texas stork's bill	ERTE13	Erodium texanum	0–2	_
	hairy desertsunflower	GECA2	Geraea canescens	0–2	_
	star gilia	GIST	Gilia stellata	0–2	_
	Arizona poppy	KAGR	Kallstroemia grandiflora	0–2	_
	tanseyleaf tansyaster	MATA2	Machaeranthera tanacetifolia	0–2	_
	desert evening primrose	OEPR	Oenothera primiveris	0–2	_
	Florida pellitory	PAFL3	Parietaria floridana	0–2	_
	woolly tidestromia	TILA2	Tidestromia lanuginosa	0–2	-
	woollyhead neststraw	STMI2	Stylocline micropoides	0–2	_
	doubleclaw	PRPA2	Proboscidea parviflora	0–1	_
	New Mexico plumeseed	RANE	Rafinesquia neomexicana	0–1	_
	sleepy silene	SIAN2	Silene antirrhina	0–1	_
	Coulter's globemallow	SPCO2	Sphaeralcea coulteri	0–1	_
	Arizona popcornflower	PLAR	Plagiobothrys arizonicus	0–1	_
	Mexican fireplant	EUHE4	Euphorbia heterophylla	0–1	_
	bristly nama	NAHI	Nama hispidum	0–1	_
	glandular threadplant	NEGL	Nemacladus glanduliferus	0–1	_
	common woolly sunflower	ERLA6	Eriophyllum lanatum	0–1	_
	milkvetch	ASTRA	Astragalus	0–1	-
	hoary bowlesia	BOIN3	Bowlesia incana	0–1	-
	yellow tackstem	CAPA7	Calycoseris parryi	0–1	
Shrub	/Vine				
6	Dominant shrubs	irubs		140–336	
	creosote bush	LATR2	Larrea tridentata	112–224	_
	whitethorn acacia	ACCO2	Acacia constricta	22–112	
	catclaw acacia	ACGR	Acacia greggii	1–28	
	ocotillo	FOSP2	Fouquieria splendens	0–22	
7	Miscellaneous shrubs			0–34	
	fourwing saltbush	ATCA2	Atriplex canescens	0–22	_
	Wright's beebrush	ALWR	Aloysia wrightii	0–11	-
	cattle saltbush	ATPO	Atriplex polycarpa	0–6	-

	longleaf jointfir	EPTR	Ephedra trifurca	0–6	-
	Berlandier's wolfberry	LYBE	Lycium berlandieri	0–6	-
	western honey mesquite	PRGLT	Prosopis glandulosa var. torreyana	0–2	-
	Warnock's snakewood	COWA	Condalia warnockii	0–2	_
	American tarwort	FLCE	Flourensia cernua	0–1	_
	crown of thorns	KOSP	Koeberlinia spinosa	0–1	_
	lotebush	ZIOB	Ziziphus obtusifolia	0–1	_
	pale desert-thorn	LYPA	Lycium pallidum	0–1	_
8	Half shrubs			11–90	
	brittlebush	ENFA	Encelia farinosa	1–28	_
	Parish's goldeneye	VIPA14	Viguiera parishii	0–22	_
	broom snakeweed	GUSA2	Gutierrezia sarothrae	1–17	_
	triangle bur ragweed	AMDE4	Ambrosia deltoidea	0–17	_
	rayless goldenhead	ACSP	Acamptopappus sphaerocephalus	0–11	_
	desert zinnia	ZIAC	Zinnia acerosa	1–11	_
	mariola	PAIN2	Parthenium incanum	0–11	_
	whitestem paperflower	PSCO2	Psilostrophe cooperi	1–11	_
	pricklyleaf dogweed	THAC	Thymophylla acerosa	1–6	_
	littleleaf ratany	KRER	Krameria erecta	1–6	_
	rough menodora	MESC	Menodora scabra	1–6	_
	white ratany	KRGR	Krameria grayi	0–1	_
	burrobush	AMDU2	Ambrosia dumosa	0–1	_
	threadleaf snakeweed	GUMI	Gutierrezia microcephala	0–1	_
9	Succulents			1–11	
	jumping cholla	CYFU10	Cylindropuntia fulgida	0–17	_
	cactus apple	OPEN3	Opuntia engelmannii	0–17	_
	staghorn cholla	CYVE3	Cylindropuntia versicolor	0–11	_
	saguaro	CAGI10	Carnegiea gigantea	0–6	_
	buck-horn cholla	CYAC8	Cylindropuntia acanthocarpa	0–6	_
	teddybear cholla	CYBI9	Cylindropuntia bigelovii	0–6	_
	tulip pricklypear	OPPH	Opuntia phaeacantha	0–6	_
	purple pricklypear	OPMA8	Opuntia macrocentra	0–2	_
	Christmas cactus	CYLE8	Cylindropuntia leptocaulis	0–2	_
	walkingstick cactus	CYSP8	Cylindropuntia spinosior	0–1	_
	Engelmann's hedgehog cactus	ECEN	Echinocereus engelmannii	0–1	_
	redspine fishhook cactus	ECER2	Echinomastus erectocentrus	0–1	_
	pinkflower hedgehog cactus	ECFA	Echinocereus fasciculatus	0–1	_
	candy barrelcactus	FEWI	Ferocactus wislizeni	0–1	_
	devil's cholla	GRKU	Grusonia kunzei	0–1	_
	Graham's nipple cactus	MAGR9	Mammillaria grahamii	0–1	_
	nightblooming cereus	PEGR3	Peniocereus greggii	0–1	_

	banana yucca	YUBA	Yucca baccata	0–1	_	
	soaptree yucca	YUEL	Yucca elata	0–1	-	
Tree						
10	Trees		11–112			
	yellow paloverde	PAMI5	Parkinsonia microphylla	11–112	-	
	velvet mesquite	PRVE	Prosopis velutina	0–11	-	

Animal community

This site offers little in the way of forage for livestock. Areas of threeawn, muhly and tridens are grazed on slopes less than 45%. Annual grasses and forbs offer limited grazing in wet winters. High concentrations of soluble gypsum in runoff water that is collected by stock ponds can cause laxative effects in livestock.

Wildlife on this site is limited to small mammals and birds and their associated predators. In areas where the site is adjacent to large stream bottoms, like the San Pedro river, it can be a forage area for mammals like mule deer and javalina.

Hydrological functions

Loamy and silty textured soils and steep slopes make this site a good producer of runoff. High concentrations of soluble gypsum in the soils can cause piping, rilling and gullies to form with heavy rainfall.

Recreational uses

Hunting, horseback riding, hiking, photography, bird watching.

Wood products

Some mesquite, catclaw and paloverde for camp and branding fires.

Other products

Gypsum is mined in some areas for use in making sheet rock.

Type locality

Location 1: Pinal County, AZ				
Township/Range/Section	T5S R17E S15			
General legal description Old Mary Cluff Ranch on the Mineral Strip of the San Carlos Apache				
Location 2: Pinal County, AZ				
Township/Range/Section	T6S R16E S23			
General legal description Old PZ Ranch, Now Becky Stambaugh ranch				

Contributors

Dan Robinett Larry D. Ellicott

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community

cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):

12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dom	inar	nt.
Dom	inai	π.

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: