

Ecological site EX043B23C110 Dense Clay (DC) Absaroka Subalpine Zone

Last updated: 10/04/2019 Accessed: 05/05/2024

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	K. Clause, E. Bainter
Contact for lead author	karen.clause@wy.usda.gov or 307-367-2257
Date	03/16/2007
Approved by	E. Bainter
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

expected to move.

	Tailouto 13	
1.	Number and extent of rills: Rare to nonexistent. Where present, short and widely spaced.	
2.	Presence of water flow patterns: Barely observable.	
3.	Number and height of erosional pedestals or terracettes: Rare to nonexistent.	
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground can range from 0-15%.	
5.	Number of gullies and erosion associated with gullies: Active gullies should not be present.	
6.	Extent of wind scoured, blowouts and/or depositional areas: Rare to nonexistent.	
7.	Amount of litter movement (describe size and distance expected to travel): Herbaceous and large woody litter not	

8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Soil Stability Index ratings range from 3 (interspaces) to 6 (under plant canopy), but average values should be 4.5 or greater.
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Soil data is limited for this site. Soil OM of 6-16% is expected.
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Plant community consists of 65-80% grasses, 15% forbs, and 5-20% shrubs. Evenly distributed plant canopy (60-90%) and litter, despite slow infiltration rates, results in minimal runoff. Basal cover is typically greater than 10% for this site and does affect runoff on this site.
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None.
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant: Mid-size, cool season bunchgrasses cool season rhizomatous grasses
	Sub-dominant: perennial forbs
	Other: perennial shrubs short, cool season bunchgrasses
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): Minimal decadence, typically associated with shrub component.
14.	Average percent litter cover (%) and depth (in): Litter ranges from 5-35% of total canopy measurement with total litter (including beneath the plant canopy) from 50-85% expected. Herbaceous litter depth typically ranges from 5-15mm. Woody litter can be up to a couple inches (4-6 cm).
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): English: 1200-1800 lb/ac (1500 lb/ac average); Metric 1344-2016 kg/ha (1680 kg/ha average).
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not

1	invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference stat for the ecological site: Bare ground greater than 25% is the most common indicator of a threshold being crossed. Sandberg bluegrass, buckwheat, yarrow, and phlox are common increasers. Kentucky bluegrass, common dandelion, thistles, and annual weeds are common invasive species in disturbed sites.
· . I	Perennial plant reproductive capability: All species are capable of reproducing, except in extreme drought years.
•	