

Ecological site R063AY009SD Sandy

Accessed: 05/18/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 063A-Northern Rolling Pierre Shale Plains

MLRA 63A is approximately 10,160 square miles in size, the majority of which is in South Dakota and a very small portion in North Dakota. The MLRA extends west of the northern half of the South Dakota reach of the Missouri River. All five of the major rivers draining western South Dakota cross this area. From north to south, these are the Grand, Moreau, Cheyenne, Bad, and White Rivers.

Elevation range from 1,300 to 1,640 feet on the bottom land along the Missouri River to 1,640 to 2,950 feet on the shale plain uplands. Cretaceous Pierre Shale underlies almost all of this area. This is a marine sediment having layers of volcanic ash that has been altered to smectitic clays. These clays shrink as they dry and swell as they get wet. Tertiary and Quaternary river deposits, remnants of erosion from the Black Hills uplift, cap isolated highlands in this area. Deposits of alluvial sand and gravel occur on the valley floors adjacent to the major streams in the area. The average annual precipitation in this area is 15 to 20 inches.

The vegetation in this area is a transition from eastern tall grass prairie to a western mixed grass prairie, (USDA-NRCS, Ag Handbook 296).

Classification relationships

Land Resource Region (LRR): G - Western Great Plains Range and Irrigated Region, Major Land Resource Area (MLRA): 63A Northern Rolling Pierre Shale Plains, (USDA-NRCS, Ag Handbook 296).

Level IV Ecoregions of the Conterminous United States, 2013: 43c – River Breaks and 43f – Subhumid Pierre Shale Plains.

Ecological site concept

The Sandy Ecological Site occurs throughout the MLRA. It is located on upland landscapes and does not receive additional moisture from runoff or overflow. Typical slope ranges from 0 to 30 percent. Soils are deep, (greater than 20 inches) with surface textures ranging from fine sandy loam to sandy loam. Subsurface textures range from loamy sand to clay loam. Vegetation in the reference plant community consists of a mix of cool- and warm-season grasses. Dominant grasses include big or sand bluestem, prairie sandreed, little bluestem, western wheatgrass and needleandthread. Other grasses include sideoats grama, switchgrass and prairie junegrass. Forbs are common and diverse, common shrubs include leadplant and rose. This site is susceptible to invasion of non-native, cool-season grasses.

Associated sites

R063AY008SD	Sands
R063AY010SD	Loamy
R063AY020SD	Loamy Overflow

Similar sites

R063AY008SD	Sands
	Sands [more sand bluestem; less western wheatgrass; steeper slopes]

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	(1) Andropogon gerardii (2) Calamovilfa longifolia

Physiographic features

This site typically occurs on gently to steeply sloping uplands.

Table 2. Representative physiographic features

Landforms	(1) Hill (2) Plain (3) Terrace
Flooding frequency	None
Ponding frequency	None
Elevation	488–823 m
Slope	0–30%
Water table depth	203 cm
Aspect	Aspect is not a significant factor

Climatic features

MLRA 63A is considered to have a continental climate – cold winters and hot summers, low humidity, light rainfall, and abundant sunshine. Extreme temperature fluctuations are also common. The climate is the result of this MLRA's location near the geographic center of North America. There are few natural barriers on the Northern Great

Plains and air masses move freely across the plains and account for rapid changes in temperature.

Annual precipitation ranges from 16 to 20 inches per year. The average annual temperature is about 47°F. January is the coldest month with average temperatures ranging from about 11°F (Pollock, South Dakota (SD)), to about 22°F (Cedar Butte, SD). July is the warmest month with temperatures averaging from about 72°F (Pollock, SD), to about 76° F (Cedar Butte, SD). The range of normal average monthly temperatures between the coldest and warmest months is about 58°F. This large annual range attests to the continental nature of this area's climate. Hourly winds are estimated to average about 11 miles per hour annually, ranging from about 13 miles per hour during the spring to about 10 miles per hour during the summer. Daytime winds are generally stronger than nighttime and occasional strong storms may bring brief periods of high winds with gusts to more than 50 miles per hour.

Growth of cool-season plants begins in early to mid-March, slowing or ceasing in late June. Warm-season plants begin growth about mid-May and continue to early or mid-September. Green up of cool-season plants may occur in September and October when adequate soil moisture is present.

Table 3. Representative climatic features

Frost-free period (average)	130 days
Freeze-free period (average)	151 days
Precipitation total (average)	483 mm

Climate stations used

- (1) KENNEBEC [USC00394516], Kennebec, SD
- (2) POLLOCK [USC00396712], Pollock, SD
- (3) CEDAR BUTTE 1NE [USC00391539], White River, SD
- (4) COTTONWOOD 2 E [USC00391972], Kadoka, SD

Influencing water features

No riparian areas or wetland features are directly associated with this site.

Soil features

The soils in this site are moderately well to somewhat excessively drained and formed in eolian sand or alluvium. The surface layer is 3 to 21 inches thick but, typically 4 to 8 inches thick. The surface texture can range from fine sandy loam to silt loam. The subsurface textures range from loamy sand to clay loam. Slopes range from 0 to 30 percent. This site should show slight to no evidence of rills, wind scoured areas, or pedestalled plants. If present, water flow paths are broken, irregular in appearance, or discontinuous. The soil surface is stable and intact.

These soils are mainly susceptible to water erosion. The hazard of water erosion increases on slopes greater than about 15 percent. Low available water capacity caused by the shallow rooting depth strongly influences the soil-water-plant relationship. Loss of the soil surface layer can result in a shift in species composition and/or decreased production.

Major soils correlated to the Sandy Ecological Site: Manter, Tally and Tuthill

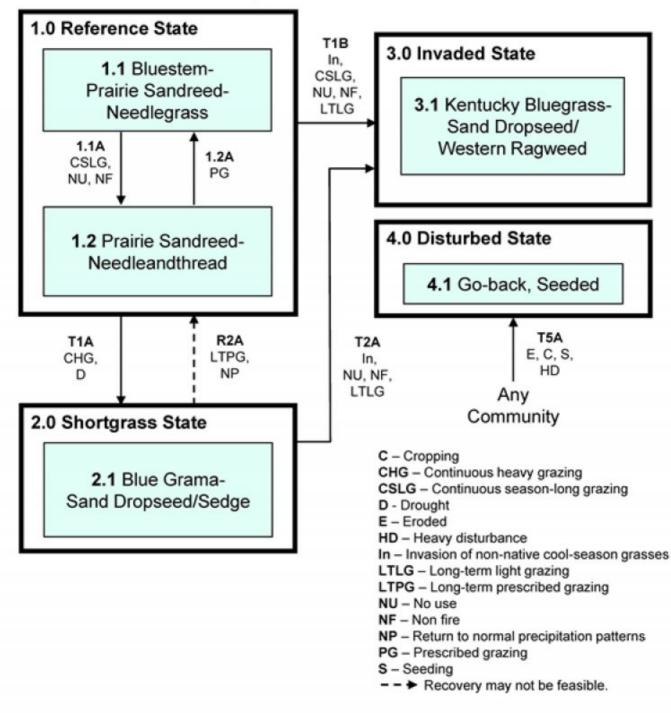
Access Web Soil Survey (http://websoilsurvey.nrcs.usda.gov/app/) for specific local soils information.

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam
Family particle size	(1) Sandy
Drainage class	Well drained to somewhat excessively drained

Permeability class	Moderate to rapid
Soil depth	203 cm
Surface fragment cover <=3"	0–25%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	12.7–17.78 cm
Calcium carbonate equivalent (0-101.6cm)	0–30%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	6.1–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–25%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics


This site developed under Northern Great Plains climatic conditions, light to severe grazing by bison and other large herbivores, sporadic natural or man-caused wildfire (often of light intensities), and other biotic and abiotic factors that typically influence soil/site development. Changes will occur in the plant communities due to short-term weather variations, impacts of native and/or exotic plant, and animal species, and management actions. While the following plant community descriptions describe more typical transitions between communities that will occur, severe disturbances, such as periods of well below average precipitation, can cause significant shifts in plant communities and/or species composition.

Continuous season-long grazing (during the typical growing season of May through October) and/or repeated seasonal grazing (e.g., every spring, every summer) without adequate recovery periods following each grazing occurrence, causes this site to depart from the Bluestem-Prairie Sandreed-Needlegrass Plant Community (1.1). Species such as western wheatgrass, prairie sandreed, needleandthread, prairie Junegrass, blue grama, and sedges will increase. Continued deterioration results in a community dominated by blue grama, sedge, bluegrass, sand dropseed, and western ragweed. Warm-season grasses such as sand bluestem, big bluestem, little bluestem, and eventually prairie sandreed, will decrease in frequency and production.

Interpretations are primarily based on the Bluestem-Prairie Sandreed-Needlegrass Plant Community, which is considered to be the reference plant community. It has been determined by study of rangeland relic areas, areas protected from excessive disturbance, and areas under long-term rotational grazing regimes. Trends in plant community dynamics ranging from heavily grazed to lightly grazed areas, seasonal use pastures, and historical accounts also have been used. Plant communities, states, transitional pathways, and thresholds have been determined through similar studies and experience.

The following diagram illustrates the common plant communities and vegetation states commonly occurring on the site and the transition pathways between communities and states. The ecological processes will be discussed in more detail in the plant community descriptions following the diagram.

State and transition model

Sandy - R063AY009SD 09/07/16

Figure 6. Sandy - R063AY009SD

	Diagram Legend - Sandy - R063AY009SD			
T1A	Heavy continuous grazing or heavy grazing in combination with drought.			
T1B	Invasion of non-native cool-season grasses, continuous season-long grazing or no use, no fire, or long-term light grazing.			
T2A	Invasion of non-native cool-season grasses, no use, no fire, or long-term light grazing.			
T5A Heavy disturbance such as tillage, abandon cropland or tillage and seeding to introduced perennial forage crops.				
R2A	Long-term prescribed grazing with change is season of use and time for adequate recovery, return to normal precipitation patterns.			
CP 1.1A	1.1 - 1.2 Continuous season-long grazing or no use and no fire.			
CP 1.2A	1.2 - 1.1 Prescribed grazing with proper stocking, change in season of use and adequate time for recovery.			

Figure 7. Sandy - R063AY009SD

State 1 Reference State

This State represents what is believed to show the natural range of variability that dominated the dynamics of the ecological site prior to European settlement. This site in Reference, is dominated by warm-season grasses and subdominant cool-season grass. Grazing or the lack of grazing and fire are the major drivers between plant communities. Non-use and no fire or long-term, light grazing will result in heavy litter accumulations and the invasion of non-native, cool-season grasses.

Community 1.1 Bluestem-Prairie Sandreed-Needlegrass Plant Community

Interpretations are based primarily on the Bluestem-Prairie Sandreed-Needlegrass Plant Community (this is also considered to be reference plant community). This community evolved with grazing by large herbivores and occasional prairie fire. It is well suited for grazing by domestic livestock and can be found on areas that are properly managed with prescribed grazing that allows for proper utilization, changes in season of use, and adequate recovery periods following each grazing event. The potential vegetation is about 80 to 90 percent grasses or grass-like plants, 5 to 10 percent forbs, and 5 to 10 percent shrubs. The dominant grasses include big or sand bluestem, prairie sandreed, little bluestem, and needleandthread. Other grasses and grass-likes include sideoats grama, western wheatgrass, and switchgrass. Significant forbs include false boneset, gayfeather, and stiff sunflower. Common shrubs include leadplant and rose. This plant community is well adapted to the Northern Great Plains climatic conditions. Individual species can vary greatly in production depending on growing conditions (timing and amount of precipitation and temperature). Community dynamics, nutrient cycle, water cycle, and energy flow are functioning properly. Plant litter is properly distributed with little movement off-site and natural plant mortality is very low. The diversity in species allows for high drought tolerance. Runoff from adjacent sites and moderate or high available water capacity provides a favorable soil-water-plant relationship.

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	
Grass/Grasslike	1894	2287	2746
Shrub/Vine	118	202	308
Forb	118	202	308
Total	2130	2691	3362

Table 5. Annual production by plant type

SD6304, Pierre Shale Plains, warm-season dominant, cool-season subdominant. Warm-season dominant, cool-season subdominant.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	7	17	25	25	15	7	1	0	0

Community 1.2 Prairie Sandreed-Needleandthread Plant Community

This plant community developed under continuous season-long grazing or nonuse and no fire. The plant community's mid-grass component is reduced and an understory of short, sod-forming grasses are increasing. The potential vegetation is about 80 to 90 percent grasses or grass-like plants, 5 to 10 percent forbs, and 5 to 10 percent shrubs. The dominant grasses include needleandthread and prairie sandreed. Other grasses and grass-likes include blue grama, sideoats grama, western wheatgrass, and sedges. Forbs commonly found in this plant community include cudweed sagewort, goldenrod, green sagewort, scurfpea, and western ragweed. Shrubs in this community include rose, fringed sagewort, and yucca. When compared to the Bluestem-Prairie Sandreed-Needlegrass Plant Community (1.1), sand bluestem and little bluestem have decreased. Prairie sandreed is beginning to decline. Needleandthread, blue grama, and sand dropseed are increasing. Plant diversity is high, but on a downward trend. This plant community is not resistant to change. Management changes can easily shift this plant community. Soil erosion is low. The water cycle is functioning, infiltration is high, and runoff is low.

Table 6. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	1468	1905	2298
Shrub/Vine	106	168	252
Forb	106	168	252
Total	1680	2241	2802

Figure 11. Plant community growth curve (percent production by month). SD6303, Pierre Shale Plains, cool/warm-season codominant.. Cool-season, warm-season codominant..

J	an	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0)	0	3	10	20	28	21	10	5	3	0	0

Pathway 1.1A Community 1.1 to 1.2

Continuous season-long grazing or nonuse and no fire will convert the plant community to the Prairie Sandreed-Needleandthread Plant Community.

Pathway 1.2A Community 1.2 to 1.1

Prescribed grazing will adequate precipitation and time for recovery from grazing occurrences will move this plant community toward the Bluestem-Prairie Sandreed-Needlegrass Plant Community (1.1).

State 2 Shortgrass State

The Shortgrass State is dominated by grazing tolerant, shortgrass species and upland sedges. This State is the result of grazing patterns that do not provide adequate recovery time for the tall, warm-season and mid stature cool-season grasses. The hydrologic function of this site is dramatically altered. Runoff is high and infiltration is low. This State is very resistant to change through grazing management alone.

Community 2.1 Blue Grama-Dropseed/Sedge Plant Community

This plant community typically develops under continuous heavy grazing over a period of several years, or drought. The dominate grasses are short, grazing tolerant species. The potential vegetation is about 80 to 90 percent grasses or grass-like plants, 5 to 10 percent forbs, and 5 to 10 percent shrubs. The dominant species are blue grama, sand dropseed, threadleaf sedge and needleandthread. Dominant forbs include, cudweed sagewort, goldenrod, green sagewort, scurfpea and western ragweed. Dominant shrubs are fringed sagewort and yucca. Compared to the reference plant community (1.0), blue grama and sand dropseed have increased creating sod bound conditions. Big bluestem and sand bluestem are absent. Prairie sandreed is limited to a few sparse colonies. This plant community is fairly resistant to change. Soil erosion is low. The water cycle is reduced because of the lack of surface litter. Infiltration is moderate due to soil texture, which can help to reduce runoff, but offsite gully erosion can be a concern. Forage production, species diversity, and ground cover are declining.

Table 7. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	
Grass/Grasslike	908	1373	1704
Forb	73	118	174
Shrub/Vine	28	78	140
Total	1009	1569	2018

Figure 13. Plant community growth curve (percent production by month). SD6303, Pierre Shale Plains, cool/warm-season codominant.. Cool-season, warm-season codominant..

	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
(C	0	3	10	20	28	21	10	5	3	0	0

State 3 Invaded State

This state is the result of invasion and dominance of introduced species. This state is characterized by the dominance of Kentucky bluegrass and/or smooth brome, and an increasing thatch layer that effectively blocks introduction of other plants into the system. Plant litter accumulation tends to favor the more shade tolerant, introduced grass species. The nutrient cycle is also impaired, the result is typically a higher level of nitrogen which also favors the introduced species. Increasing plant litter decreases the amount of sunlight reaching plant crowns thereby shifting competitive advantage to shade tolerant, introduced grass species. Studies indicate that soil biological activity is altered, and this shift apparently exploits the soil microclimate and encourages growth of the introduced grass species. Once the threshold is crossed, a change in grazing management alone cannot cause a reduction in the invasive grass dominance. Preliminary studies would tend to indicate this threshold may exist when Kentucky bluegrass exceeds 30 percent of the plant community and native grasses represent less than 40 percent of the plant community composition. Plant communities dominated by Kentucky bluegrass have significantly less cover and diversity of native grasses and forb species (Toledo, D. et al., 2014).

Community 3.1 Kentucky Bluegrass-Sand Dropseed/Western Ragweed Plant Community

This plant community is dominated by Kentucky bluegrass or smooth brome and/or other non-native cool season grasses (30 percent or more of the PC). This plant community evolved under no use and no fire or heavy continuous season-long grazing with no change in season of use or long-term light grazing. The dominant grasses include Kentucky bluegrass, and smooth brome. Sand dropseed and some needlegrass may still be found in the plant community. Forbs commonly found in this plant community include western ragweed, cudweed sagewort, goldenrod and scurfpea. Production will be significantly reduced when compared to the interpretive plant community The period when palatability is high is relatively short, as Kentucky bluegrass and smooth brome matures rapidly. Energy capture is also reduced. Runoff is high and biological activity in the soil is likely reduced significantly in this

State 4 Disturbed State

This State can transition from any Plant Community. The two separate vegetative Plant Communities are highly variable in nature. They are derived through different management scenarios, and are not related successionally. Infiltration, runoff, and soil erosion varies depending on the vegetation present on the site.

Community 4.1 Go-back or Seeded Plant Communities

The Go-back plant community can be reached whenever severe mechanical disturbance occurs (e.g., tilled and abandoned land, either past or present). During the early successional stages, the species that mainly dominate are annual grasses and forbs, later being replaced by both native and introduced perennials. The vegetation on this site varies greatly, sometimes being dominated by threeawn, bluegrass, smooth brome, annual bromegrass, crested wheatgrass, buffalograss, broom snakeweed, sweetclover, and nonnative thistles. Other plants that commonly occur on the site include western wheatgrass, western ragweed, Rocky Mountain beeplant, deathcamas, prickly lettuce, marestail, kochia, foxtail, and sunflowers. Bare ground is prevalent due to the loss of organic matter and lower overall soil health. The Seeded Plant Community is normally those areas planted to pubescent or intermediate wheatgrass, alfalfa, crested wheatgrass, or other introduced species. Refer to the associated Forage Suitability Group description for adapted species.

Transition 1A State 1 to 2

Continuous heavy grazing or drought will transition this plant community to the Shortgrass State (2.0).

Transition 1B State 1 to 3

Invasion of non-native cool-season grasses, continuous season-long grazing, no use and no fire or long-term light grazing will cause a transition to the Invaded State (3.0).

Transition 5A State 1 to 4

Heavy disturbance including eroded, tillage, abandon cropland or seeding to improved pasture species result in a transition to the Disturbed State (4.0).

Restoration pathway 2A State 2 to 1

Long-term, prescribed grazing and a return of normal precipitation patterns will move this plant community back towards the Reference State (1.0). The rate of this transition can be extremely variable depending on the species present on the site and the availability of a seed source. Typically, this transition will take a long period of time.

Transition 2A State 2 to 3

Invasion of non-native, cool-season grasses, no use and no fire or long-term, light grazing will transition this state to the Invaded State (3.0).

Transition 5A State 2 to 4

Heavy disturbance including eroded, tillage, abandon cropland or seeding to improved pasture species result in a

Transition 5A State 3 to 4

Heavy disturbance including eroded, tillage, abandon cropland or seeding to improved pasture species result in a transition to the Disturbed State (4.0).

Additional community tables

 Table 8. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Bluestem			269–807	
	big bluestem	ANGE	Andropogon gerardii	135–807	_
	sand bluestem	ANHA	Andropogon hallii	135–807	
2	Tall Warm-Season Gras	ses		404–673	
	prairie sandreed	CALO	Calamovilfa longifolia	269–673	_
	switchgrass	PAVI2	Panicum virgatum	135–269	_
3	Needlegrass			269–538	
	needle and thread	HECOC8	Hesperostipa comata ssp. comata	269–538	
	porcupinegrass	HESP11	Hesperostipa spartea	0–135	
	green needlegrass	NAVI4	Nassella viridula	0–135	
4	Mid Warm-Season Gras	ses	•	269–404	
	little bluestem	SCSC	Schizachyrium scoparium	135–404	_
	sideoats grama	BOCU	Bouteloua curtipendula	135–269	_
5	Short Warm-Season Gra	isses		54–215	
	blue grama	BOGR2	Bouteloua gracilis	54–215	_
	hairy grama	BOHI2	Bouteloua hirsuta	0–135	_
	sand dropseed	SPCR	Sporobolus cryptandrus	0–135	_
6	Other Native Grasses	-1		135–269	
	western wheatgrass	PASM	Pascopyrum smithii	54–269	-
	Graminoid (grass or grass-like)	2GRAM	Graminoid (grass or grass-like)	0–135	_
	prairie Junegrass	KOMA	Koeleria macrantha	27–81	
	Scribner's rosette grass	DIOLS	Dichanthelium oligosanthes var. scribnerianum	27–54	
7	Grass-likes			54–188	
	threadleaf sedge	CAFI	Carex filifolia	54–188	_
	Grass-like (not a true grass)	2GL	Grass-like (not a true grass)	0–135	_
Forb	•	•			
9	Forbs			135–269	
	Forb, native	2FN	Forb, native	0–135	_
	false boneset	BREU	Brickellia eupatorioides	27–81	_
	blazing star	LIATR	Liatris	27–81	-
	stiff sunflower	HEPA19	Helianthus pauciflorus	27–81	

	+	+			
	hairy false goldenaster	HEVI4	Heterotheca villosa	0–54	-
	bush morning-glory	IPLE	Ipomoea leptophylla	0–54	_
	white prairie aster	SYFA	Symphyotrichum falcatum	27–54	_
	prairie spiderwort	TROC	Tradescantia occidentalis	27–54	-
	scurfpea	PSORA2	Psoralidium	27–54	-
	upright prairie coneflower	RACO3	Ratibida columnifera	27–54	-
	goldenrod	SOLID	Solidago	27–54	-
	prairie clover	DALEA	Dalea	27–54	_
	blacksamson echinacea	ECAN2	Echinacea angustifolia	0–54	_
	tarragon	ARDR4	Artemisia dracunculus	27–54	_
	white sagebrush	ARLU	Artemisia Iudoviciana	27–54	_
	common sunflower	HEAN3	Helianthus annuus	0–54	_
	Cuman ragweed	AMPS	Ambrosia psilostachya	0–27	_
	pussytoes	ANTEN	Antennaria	0–27	_
	annual buckwheat	ERAN4	Eriogonum annuum	0–27	_
	scarlet globemallow	SPCO	Sphaeralcea coccinea	0–27	_
	hoary puccoon	LICA12	Lithospermum canescens	0–27	_
	rush skeletonplant	LYJU	Lygodesmia juncea	0–27	_
	beardtongue	PENST	Penstemon	0–27	_
Shruk	o/Vine				
10	Shrubs			135–269	
	leadplant	AMCA6	Amorpha canescens	27–108	_
	rose	ROSA5	Rosa	27–81	_
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	0–54	_
	prairie sagewort	ARFR4	Artemisia frigida	27–54	_
	pricklypear	OPUNT	Opuntia	0–27	_
	western sandcherry	PRPUB	Prunus pumila var. besseyi	0–27	_
	soapweed yucca	YUGL	Yucca glauca	0–27	_

Table 9. Community 1.2 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike	•	••		
1	Bluestem			45–179	
	big bluestem	ANGE	Andropogon gerardii	45–179	_
	sand bluestem	ANHA	Andropogon hallii	45–179	_
2	Tall Warm-Season Gra	asses		336–673	
	prairie sandreed	CALO	Calamovilfa longifolia	336–673	_
	switchgrass	PAVI2	Panicum virgatum	0–112	_
3	Needlegrass			336–560	
	needle and thread	HECOC8	Hesperostipa comata ssp. comata	336–560	_
	porcupinegrass	HESP11	Hesperostipa spartea	0–45	_
	green needlegrass	NAVI4	Nassella viridula	0–45	_
4	Mid Warm-Season Gra	asses		112–224	

	sideoats grama	BOCU	Bouteloua curtipendula	112–224	
	little bluestem	SCSC	Schizachyrium scoparium	45–179	
5	Short Warm-Season Gra	sses		112–336	
	blue grama	BOGR2	Bouteloua gracilis	112–336	
	sand dropseed	SPCR	Sporobolus cryptandrus	45–179	
	hairy grama	BOHI2	Bouteloua hirsuta	0–112	
6	Other Native Grasses	•	•	112–224	
	western wheatgrass	PASM	Pascopyrum smithii	45–224	
	Graminoid (grass or grass-like)	2GRAM	Graminoid (grass or grass-like)	0–112	
	Scribner's rosette grass	DIOLS	Dichanthelium oligosanthes var. scribnerianum	22–67	
	prairie Junegrass	KOMA	Koeleria macrantha	22–67	
,	Grass-likes	•	•	112–224	
	threadleaf sedge	CAFI	Carex filifolia	112–224	
	Grass-like (not a true grass)	2GL	Grass-like (not a true grass)	0–112	
3	Non-Native Grasses	•	•	45–157	
	bluegrass	POA	Poa	22–157	
	cheatgrass	BRTE	Bromus tectorum	0–112	
orb	1				
)	Forbs			112–224	
	Forb, introduced	2FI	Forb, introduced	0–112	
	Forb, native	2FN	Forb, native	0–112	
	Cuman ragweed	AMPS	Ambrosia psilostachya	22–67	
	tarragon	ARDR4	Artemisia dracunculus	22–67	
	white sagebrush	ARLU	Artemisia Iudoviciana	22–67	
	common sunflower	HEAN3	Helianthus annuus	0–67	
	scurfpea	PSORA2	Psoralidium	22–67	
	goldenrod	SOLID	Solidago	22–67	
	white prairie aster	SYFA	Symphyotrichum falcatum	22–45	
	blazing star	LIATR	Liatris	22–45	
	annual buckwheat	ERAN4	Eriogonum annuum	0–45	
	rush skeletonplant	LYJU	Lygodesmia juncea	0–22	
	upright prairie coneflower	RACO3	Ratibida columnifera	0–22	
	stiff sunflower	HEPA19	Helianthus pauciflorus	0–22	
	hairy false goldenaster	HEVI4	, Heterotheca villosa	0–22	
	bush morning-glory	IPLE	Ipomoea leptophylla	0–22	
	false boneset	BREU	Brickellia eupatorioides	0–22	
	prairie clover	DALEA	Dalea	0–22	
	blacksamson echinacea	ECAN2	Echinacea angustifolia	0–22	
	pussytoes	ANTEN	Antennaria	0-22	
	prairie spiderwort	TROC	Tradescantia occidentalis	0–22	

10	Shrubs			112–224	
	prairie sagewort	ARFR4	Artemisia frigida	22–67	_
	pricklypear	OPUNT	Opuntia	0–45	-
	rose	ROSA5	Rosa	22–45	-
	soapweed yucca	YUGL	Yucca glauca	0–45	-
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	0–45	-
	leadplant	AMCA6	Amorpha canescens	0–22	-

Table 10. Community 2.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike	•			
2	Tall Warm-Season Grass	ses		0–78	
	prairie sandreed	CALO	Calamovilfa longifolia	0–78	_
3	Needlegrass			31–157	
	needle and thread	HECOC8	Hesperostipa comata ssp. comata	31–157	_
4	Mid Warm-Season Grass	ses		0–47	
	sideoats grama	BOCU	Bouteloua curtipendula	0–47	_
	little bluestem	SCSC	Schizachyrium scoparium	0–47	_
5	Short Warm-Season Gra	sses		314–628	
	blue grama	BOGR2	Bouteloua gracilis	235–549	_
	sand dropseed	SPCR	Sporobolus cryptandrus	78–235	_
	hairy grama	BOHI2	Bouteloua hirsuta	0–78	_
6	Other Native Grasses			31–126	
	Graminoid (grass or grass-like)	2GRAM	Graminoid (grass or grass-like)	0–78	_
	western wheatgrass	PASM	Pascopyrum smithii	0–78	_
	Scribner's rosette grass	DIOLS	Dichanthelium oligosanthes var. scribnerianum	16–47	_
	prairie Junegrass	KOMA	Koeleria macrantha	16–31	_
7	Grass-likes	•		157–314	
	threadleaf sedge	CAFI	Carex filifolia	157–314	_
	Grass-like (not a true grass)	2GL	Grass-like (not a true grass)	0–157	_
8	Non-Native Grasses			157–392	
	bluegrass	POA	Poa	157–392	_
	cheatgrass	BRTE	Bromus tectorum	0–157	_
Forb			·		
9	Forbs			78–157	
	Forb, introduced	2FI	Forb, introduced	0–110	_
	Cuman ragweed	AMPS	Ambrosia psilostachya	16–78	_
	tarragon	ARDR4	Artemisia dracunculus	16–63	-
	white sagebrush	ARLU	Artemisia ludoviciana	16–63	-
	goldenrod	SOLID	Solidago	16–63	-
	scurfpea	PSORA2	Psoralidium	16–47	_

	annual buckwneat	EKAN4	Eriogonum annuum	U—47	-
	common sunflower	HEAN3	Helianthus annuus	0–47	-
	Forb, native	2FN	Forb, native	0–47	-
	pussytoes	ANTEN	Antennaria	0–16	-
	blazing star	LIATR	Liatris	0–16	-
	rush skeletonplant	LYJU	Lygodesmia juncea	0–16	-
	upright prairie coneflower	RACO3	Ratibida columnifera	0–16	-
	scarlet globemallow	SPCO	Sphaeralcea coccinea	0–16	-
	white prairie aster	SYFA	Symphyotrichum falcatum	0–16	-
Shru	b/Vine				
10	Shrubs			31–126	
	prairie sagewort	ARFR4	Artemisia frigida	16–63	-
	pricklypear	OPUNT	Opuntia	0–47	-
	soapweed yucca	YUGL	Yucca glauca	0–47	-
	rose	ROSA5	Rosa	0–16	_
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	0–16	_

Animal community

Animal Community – Grazing Interpretations

The following table lists annual, suggested initial stocking rates with average growing conditions. These are conservative estimates that should be used only as guidelines in the initial stages of conservation planning. Often, the current plant composition does not entirely match any particular plant community (as described in this ecological site description). Because of this, a resource inventory is necessary to document plant composition and production. More accurate carrying capacity estimates should eventually be calculated using the following stocking rate information along with animal preference data and actual stocking records, particularly when grazers other than cattle are involved. With consultation of the land manager, more intensive grazing management may result in improved harvest efficiencies and increased carrying capacity.

Bluestem-Prairie Sandreed-Needlegrass Plant Community (1.1) Total Annual Production (lbs./acre, air-dry): 2400 Stocking Rate* (AUM/acre): 0.66

Prairie Sandreed-Needleandthread Plant Community (1.2) Total Annual Production (lbs./acre, air-dry): 2000 Stocking Rate* (AUM/acre): 0.55

Blue Grama-Sand Dropseed/Sedge Plant Community (2.1) Total Annual Production (lbs./acre, air-dry): 1400 Stocking Rate* (AUM/acre): 0.38

Other Plant Community Phases have highly variable forage production levels. Actual on-site forage inventories will need to be conducted to determine average annual production, stocking rates and timing of grazing.

*Based on 912 lbs./acre (air-dry weight) per Animal Unit Month (AUM), and on 25 percent harvest efficiency of preferred and desirable species (refer to USDA NRCS, National Range and Pasture Handbook).

Total annual production on site may contain vegetation which is deemed undesirable or untargeted by the grazing animal. Therefore, AUM values may have been reduced to reflect only preferred or desirable forage species.

Grazing by domestic livestock is one of the major income-producing industries in the area. Rangeland in this area may provide yearlong forage. During the dormant period, the forage for livestock will likely be lacking protein to meet livestock requirements, and added protein will allow ruminants to better utilize the energy stored in grazed

plant materials. A forage quality test (either directly or through fecal sampling) should be used to determine the level of supplementation needed.

Hydrological functions

Water is the principal factor limiting forage production on this site. This site is dominated by soils in hydrologic group B. Infiltration varies from moderate to rapid and runoff potential varies from negligible to medium for this site depending on soil hydrologic group, slope and ground cover. In many cases, areas with greater than 75 percent ground cover have the greatest potential for high infiltration and lower runoff. An exception would be where shortgrasses form a dense sod and dominate the site. Areas where ground cover is less than 50 percent have the greatest potential to have reduced infiltration and higher runoff (refer to Section 4, NRCS National Engineering Handbook for runoff quantities and hydrologic curves).

Recreational uses

This site provides hunting, hiking, photography, bird watching, and other opportunities. The wide varieties of plants that bloom from spring until fall have an aesthetic value that appeals to visitors.

Wood products

No appreciable wood products are typically present on this site.

Other products

Seed harvest of native plant species can provide additional income on this site.

Other information

Revision Notes: "Previously Approved Provisional

This Provisional ecological site concept has passed Quality Control (QC) and Quality Assurance (QA) to ensure that the site meets the 2014 NESH standards for a Provisional ecological site. This is an updated "Previously Approved" ESD which represents a first generation tier of documentation that prior to the release of the 2014 National Ecological Site Handbook (NESH), met all requirement as an Approved ESD as laid out in the 2003 National Range and Pasture Handbook (NRPH). The document fully describe the reference state and community phase in the state and transition model. All other alternative states are at least described in narrative form. The "Previously Approved" ESD has been field tested for a minimum of five years and is a proven functional document for conservation planning. The "Previously Approved" ESD does not contain all tabular and narrative entries as required in the current Approved level of documentation but it is expected that the "Previously Approved" ESD will continue refinement towards an Approved status.

Site Development and Testing Plan:

Future work, as described in a Project Plan, to validate the information in this Provisional Ecological Site Description is needed. This will include field activities to collect low, medium and high intensity sampling, soil correlations, and analysis of that data. Annual field reviews should be done by soil scientists and vegetation specialists. A final field review, peer review, quality control, and quality assurance reviews of the ESD will be needed to produce the final document.

Inventory data references

Information presented here has been derived from NRCS clipping data and other inventory data. Field observations from range-trained personnel were also used. Those involved in developing this site include: April Boltjes, Range Management Specialist (RMS), NRCS; Stan Boltz, RMS, NRCS; Kent Cooley, Soil Scientist, NRCS; Rick Peterson, RMS, NRCS; and L. Michael Stirling, RMS, NRCS. There are no SCS-RANGE-417 clipping records for this site.

High Plains Regional Climate Center, University of Nebraska. (http://www.hprcc.unl.edu/) Teledo, D., Sanderson, M., Spaeth, K., Hendrickson, J., Printz, J. 2014. Extent of Kentucky Bluegrass and Its Effect on Native Plant Species Diversity and Ecosystem Services in the Northern Great Plains of the United States. Invasive Plant Science and Management USDA, NRCS. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296, 2006 USDA, NRCS. National Ecological Site Handbook, 1st Ed. January, 2014 USDA, NRCS. National Water and Climate Center. (http://www.wcc.nrcs.usda.gov/) USDA, NRCS. National Range and Pasture Handbook, September 1997

USDA, NRCS. National Soil Information System, Information Technology Center. (http://nasis.nrcs.usda.gov) USDA, NRCS. 2001. The PLANTS Database, Version 3.1 (http://plants.usda.gov). National Plant Data Center. USDA, NRCS, Various Published Soil Surveys

Contributors

Stan Boltz

Acknowledgments

Rick L. Peterson Updated ESD 9/7/16

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Stan Boltz
Contact for lead author	stanley.boltz@sd.usda.gov, 605-352-1236
Date	05/08/2010
Approved by	Stan Boltz
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills: None.
- 2. Presence of water flow patterns: None, or barely visible and discontinuous.
- 3. Number and height of erosional pedestals or terracettes: Typically non-existent, but steeper areas may have limited pedastalling of bunchgrasses. No exposed roots should be present.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): 0 to 10 percent is typical.

- 5. Number of gullies and erosion associated with gullies: None should be present.
- 6. Extent of wind scoured, blowouts and/or depositional areas: None.
- 7. Amount of litter movement (describe size and distance expected to travel): Litter should fall in place. Slight amount of movement of smallest size class litter is possible, but not normal.
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Soil aggregate stability ratings should typically be 5 to 6, normally 6. Surface organic matter adheres to the soil surface. Soil surface fragments will typically retain structure indefinitely when dipped in distilled water.
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): A-horizon should be 3 to 10 inches thick with mollic (dark) colors when moist. Structure typically is medium to fine granular at least in the upper A-horizon.
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Combination of shallow and deep rooted species (mid & tall rhizomatous and tufted perennial cool- and warm-season grasses) with fine and coarse roots positively influences infiltration.
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Big and/or sand bluestem > Tall warm-season rhizomatous grasses

Sub-dominant: Mid/tall cool-season bunchgrasses > Mid warm-season grasses >

Other: Mid cool-season rhizomatous grass = Forbs = Shrubs > Short warm-season grasses > Short cool-season bunchgrass

Additional:

- Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): Very little evidence of decadence or mortality. Bunch grasses have strong, healthy centers and shrubs are vigorous.
- 14. Average percent litter cover (%) and depth (in):

- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction): Production ranges from 1,900-3,000 lbs./acre (air-dry weight). Reference value production is 2,400 lbs./acre (air-dry weight).
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: State and local noxious weeds, Kentucky bluegrass, annual bromes
- 17. **Perennial plant reproductive capability:** All species exhibit high vigor relative to climatic conditions. Do not rate based solely on seed production. Perennial grasses should have vigorous rhizomes or tillers.