

# Ecological site R080AY050OK Loamy Bottomland

Last updated: 9/19/2023 Accessed: 05/17/2024

#### **General information**

**Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.



Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

#### **MLRA** notes

Major Land Resource Area (MLRA): 080A-Central Rolling Red Prairies

MLRA 80A is characterized by dark red Permian rocks that are exposed on gently sloping plains. These plains are dissected by rivers that flow from northwest to southeast. Major rivers of this MLRA include the Chickaskia and Bluff rivers in KS, the Salt Fork, Cimarron,North and South Canadian,Washita, Cache, Red River in OK, and branches of the Wichita River in TX. Soils are generally well drained, loamy or clayey deposits overlying Permian sandstones or shales.

#### **Classification relationships**

This ecological site is correlated to soil components at the Major Land Resource Area (MLRA) level which is further described in USDA Ag Handbook 296.

#### **Ecological site concept**

This site occurs on deep, loamy soils on floodplains. The sites are periodically flooded and also receive run-on water from adjacent uplands. The reference plant community is dominated by tallgrasses mixed with midgrasses and forbs. Shrubs may be present and small amounts and there may be a mixture of bottomland hardwood trees scattered across the landscape. In the absence of fire, various woody species including elm, hackberry, and eastern

# **Associated sites**

| R080AY056OK | <b>Loamy Upland</b><br>Loamy soils on uplands.                     |
|-------------|--------------------------------------------------------------------|
| R080AY001OK | Alkali Bottomland<br>Localized sodic areas on floodplains          |
| R080AY045OK | <b>Clay Bottomland</b><br>Clay soils. Similar landscape positions. |

### Similar sites

| R080AY045OK | Clay Bottomland<br>Clay soils. Similar landscape positions.   |  |  |
|-------------|---------------------------------------------------------------|--|--|
| R080AY068OK | Sandy Bottomland<br>Sandy soils. Similar landscape positions. |  |  |

Table 1. Dominant plant species

| Tree       | (1) Carya illinoinensis   |
|------------|---------------------------|
| Shrub      | Not specified             |
| Herbaceous | (1) Tripsacum dactyloides |

# **Physiographic features**

These sites are deep, productive, alluvial, loamy bottomlands subject to frequent or occasional overflow from streams and runoff from hillsides. This site ranges from gently sloping and level bottomlands with slopes from 0% to 2%.



A Trees.

#### Figure 2. R080AY050OK

#### Table 2. Representative physiographic features

| Landforms          | (1) Alluvial plain > Flood plain                  |
|--------------------|---------------------------------------------------|
| Runoff class       | Negligible to medium                              |
| Flooding duration  | Very brief (4 to 48 hours) to brief (2 to 7 days) |
| Flooding frequency | Rare to frequent                                  |
| Elevation          | 152–457 m                                         |
| Slope              | 0–2%                                              |

| Water table depth | 152 cm                             |
|-------------------|------------------------------------|
| Aspect            | Aspect is not a significant factor |

# **Climatic features**

The climate is characterized by moist, cool, springs; hot, often dry summers; mild autumns; and mild to cold winters. Variation in timing and amounts of precipition from year to year is quite common. Drought cycles range from three to five years duration with occasionally longer periods occurring at unpredictable intervals. Above normal rainfall cycles are usually just as random, but shorter in duration.

| Table 3. Representative climatic features | ; |
|-------------------------------------------|---|
|-------------------------------------------|---|

| Frost-free period (characteristic range)   | 174-188 days |  |  |
|--------------------------------------------|--------------|--|--|
| Freeze-free period (characteristic range)  | 194-212 days |  |  |
| Precipitation total (characteristic range) | 838-991 mm   |  |  |
| Frost-free period (actual range)           | 161-191 days |  |  |
| Freeze-free period (actual range)          | 190-223 days |  |  |
| Precipitation total (actual range)         | 787-1,092 mm |  |  |
| Frost-free period (average)                | 180 days     |  |  |
| Freeze-free period (average)               | 205 days     |  |  |
| Precipitation total (average)              | 940 mm       |  |  |

## **Climate stations used**

- (1) PAWHUSKA [USC00346935], Pawhuska, OK
- (2) PERRY [USC00347012], Perry, OK
- (3) PONCA CITY MUNI AP [USW00013969], Ponca City, OK
- (4) OKEENE [USC00346629], Okeene, OK
- (5) GEARY [USC00343497], Calumet, OK
- (6) CARNEGIE 5 NE [USC00341504], Carnegie, OK
- (7) CHICKASHA EXP STATION [USC00341750], Chickasha, OK
- (8) NORMAN 3SSE [USC00346386], Norman, OK
- (9) PAULS VALLEY 4 WSW [USC00346926], Pauls Valley, OK
- (10) CUSHING [USC00342318], Cushing, OK
- (11) MEEKER 5 W [USC00345779], Meeker, OK
- (12) RALSTON [USC00347390], Ralston, OK
- (13) JEFFERSON [USC00344573], Medford, OK
- (14) ANTHONY [USW00013980], Anthony, KS

#### Influencing water features

These sites occur on floodplains and drainageways on deep, alluvial soils. These areas receive run-on water from adjacent upland sites. Run off is usually slow due to the low slopes of the floodplain. The presence of deep rooted tallgrasses can help facilitate percolation of water into the soil profile.

#### Wetland description

NA

Figure 7-1 The hydrologic cycle with factors that affect hydrologic processes





#### **Soil features**

Soils are mapped for each county within the MLRA. Mapunits are representations of the major soil series component(s) and named accordingly. Each Mapunit is spatially represented on a digital soils map as polygons of different shapes and sizes. Within these Mapunits, there are often minor soil series components included. These minor components are soils that occur within a Mapunit polygon but are of small extent (15% or less of the Mapunit area). However, it is difficult to separate these minor soils spatially due to the scale of soil mapping.

Ecological sites are correlated at the component level of the soil survey. Therefore, a single Mapunit may contain multiple Ecological Sites just as it may contain multiple soil components. This is important to understand when investigating soils and Ecological Sites. A soil survey Mapunit may be correlated to a single Ecological Site based on the major component; however, there may be inclusional areas of additional Ecological Sites which are correlated to the minor components of that particular soil Mapunit.

Representative soil components for this site include: Port, Dale, and Yahola

These are deep, dark, loamy alluvial soils on the level floodplains of larger streams. Surface soils are loams and silt over deep, sometimes stratified alluvial deposits of loams, sandy loams, or clay loams. The soils are neutral to calcareous and are both friable and permeable. They are fertile and have a good infiltration rate as well as a high moisture storage capacity. They are occasionally overflowed and sometimes receive excess water from adjacent slopes. Soils in this site are very productive.

#### Table 4. Representative soil features

| Parent material                          | (1) Alluvium–sandstone and shale            |  |  |  |
|------------------------------------------|---------------------------------------------|--|--|--|
| Surface texture                          | (1) Loam<br>(2) Sandy loam<br>(3) Silt loam |  |  |  |
| Drainage class                           | Moderately well drained to well drained     |  |  |  |
| Permeability class                       | Moderate to moderately rapid                |  |  |  |
| Soil depth                               | 152 cm                                      |  |  |  |
| Surface fragment cover <=3"              | 0–1%                                        |  |  |  |
| Surface fragment cover >3"               | 0–1%                                        |  |  |  |
| Available water capacity<br>(0-101.6cm)  | 22.86–30.48 cm                              |  |  |  |
| Calcium carbonate equivalent (0-101.6cm) | 0–1%                                        |  |  |  |

| Electrical conductivity<br>(0-101.6cm)                   | 0–1 mmhos/cm |
|----------------------------------------------------------|--------------|
| Sodium adsorption ratio<br>(0-101.6cm)                   | 0–1          |
| Soil reaction (1:1 water)<br>(0-101.6cm)                 | 6.5–7.5      |
| Subsurface fragment volume <=3"<br>(Depth not specified) | 0–4%         |

# Ecological dynamics

The information contained in the State and Transition Diagram (STD) and the Ecological Site Description was developed using archaeological and historical data, professional experience, and scientific studies. The information presented is representative of a very complex set of plant communities. Not all scenarios or plants are included. Key indicator plants, animals and ecological processes are described to inform land management decisions.

The reference plant community is tallgrass dominated with midgrasses and forbs. This site occurs on broad bottoms adjacent to streams and rivers and along narrower upland drainageways. Loamy Bottomland soils have deep, fertile, loamy surfaces that often receive extra moisture from overflow or run-in from adjacent slopes. Plant community dominance in the plains usually oft-times depends on fire and grazing histories of the site. Historically, a major portion of this site was subjected to occasional fire and large animal herbivory (i.e. bison, elk, deer). The resultant plant community was usually dominated by deep rooted, warm season, perennial, tallgrasses. All the major grasses, and most of the dominant forbs, are rhizomatous. The rhizomes of grasses saturate the upper four to five inches of soil and are usually tightly intertwined and intermixed with numerous deep rooted perennial warm season forbs. Because of this site's deep soils and high rainfall averages, the plant community is very productive. For centuries, the reference plants of this community have withstood sporadic rainfall; flooding and sedimentation; long rainy periods and extended drouths. Some narrow areas, located adjacent to streams and rivers, along with a few larger areas such as oxbows, were historically protected from fire. These protected areas developed savannah or woodland type plant communities dominated by an overstory of large hardwood trees and a understory of predominately cool season grasses and other shade tolerant plants.

In addition to the reference state, several other plant communities can exist on Loamy Bottomland sites. These communities usually reflect historical management practices. There are various recognizable stages of degradation on this site. Each stage may result in a plant community that may, or may not, remain stable for many years. Loamy Bottomland is a favored grazing area by most large herbivores, so long term overgrazing is common unless prescribed grazing regimes are implemented. Long term overgrazing by cattle results in a gradual decrease of the tallgrasses and preferred forbs. As these preferred species decline, they are replaced by midgrasses and less palatable forbs. For various reasons, as degradation continues on the site, woody species such as eastern redcedar begin to invade the plant community.

Fire was a major influence in the development of this site. With the suppression of fire, over time, shrubs and trees usually invade the grassland portions of Loamy Bottomlands and may eventually become the dominant species on site. Shrub invasion can occur, regardless of the grazing regime, in the absence of fire.

#### State and Transition Diagram:

A State and Transition Diagram for the Loamy Bottomland (R080AY050OK) site is depicted below. Thorough descriptions of each state, transition, and pathway follow the model. Experts base this model on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.

Plant communities will differ across the MLRA because of the natural variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal; other vegetative states may be desired plant communities as long as the Range Health assessments are in the moderate and above category.

The biological processes on this site are complex. Therefore, representative values are presented in a land management context. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of

conditions, species, and responses for the site.

Composition by dry weight and percent canopy cover are provided to describing the functional groups. Most observers find it easier to visualize or estimate percent canopy for woody species (trees and shrubs).

The following diagram suggests some pathways that the vegetation on this site might take. There may be other states not shown on the diagram. This information is intended to show what might happen in a given set of circumstances. It does not mean that this would happen the same way in every instance. Local professional guidance should always be sought before pursuing a treatment scenario.

#### State and transition model



# R080AY050OK Loamy Bottomland

Figure 10. R080AY050OK

# Legend

1.1A: Abusive grazing over multiple growing seasons.

**1.2A:** Prescribed grazing including growing season deferment.

T1A: No Fire; No Brush Management.

T1B,T2A: Cultivation; Land Use Change

R2A: Prescribed Fire; Brush Management.

R3A: Range Planting; Prescribed Grazing; Time.

Figure 11. R080AY050OK

# State 1 Grassland

This is the reference or diagnostic community for the site. The description is based on early range site descriptions, clipping data, professional consensus of experienced range specialists, and analysis of field work

#### **Dominant plant species**

- pecan (Carya illinoinensis), tree
- eastern gamagrass (Tripsacum dactyloides), grass

Community 1.1 Tallgrass



Figure 12. Loamy Bottomland #1, HPC



Figure 13. Loamy Bottomland, Talgrass Dominant

The reference community is dominated by a composite of tall, warm season grasses. Big bluestem, eastern gamagrass, Indiangrass, prairie cordgrass and switchgrass comprise approximately 80 percent of the vegetation. Secondary grasses occur in minor amounts. These secondary grasses include tall dropseed, Florida paspalum, beaked panicum, little bluestem and knotroot bristlegrass. Cool season grasses and grasslike plants such as Canada wildrye, Virginia wildrye and sedges may contribute up to five percent of the total vegetation on site. Most of the major grasses grow during the months April through June. In a typical year, approximately 75 to 80 percent of the annual herbage production is completed by the first of July. Both eastern gamagrass and prairie cordgrass have been observed emerging through several inches of sediment deposited on the site by flood waters. Numerous forbs prevail on this site. The more abundant forbs are wholeleaf rosinweed, Maximilian sunflower, sawtooth sunflower and Illinois bundleflower. Other common forbs are cupleaf rosinweed, stiffleaf sunflower, ashy sunflower, Canada goldenrod, heathaster, smooth oxeye, prairie acacia and roundhead lespedeza. Under moderate levels of grazing, the major HPC grasses on this site will remain very durable and plant composition proportions can be maintained almost indefinitely. Most of the palatable forbs will decrease with light to moderate continuous grazing, however, it is possible to maintain these palatable forbs under periodic deferment by using prescribed grazing. Overgrazing by livestock will eventually have major impacts on vegetation composition. A decrease in vigor of the more palatable grasses will encourage a gradual increase in secondary plants such as tall dropseed, purpletop, silver bluestem and sideoats grama. Many of the forbs are very palatable and readily selected by livestock. Forbs that increase with overgrazing include heathaster, tall goldenrod, Missouri goldenrod, western ragweed and Louisiana sagewort. Woody plants such as buckbrush, blackberry, roughleaf dogwood, smooth sumac, persimmon, hawthorn, elm, oak and ash also increase under Long term overgrazing, especially if there is also absence of fire. Often, the total elimination of fire on this site, regardless of grazing intensity implemented, can result in the transformation of a herbaceous dominated plant community to a community almost closed by tree canopy. Major tree species that encroach on the site are oak, ash, elm, hackberry, pecan, sycamore and cottonwood.

| Plant Type      | Low<br>(Kg/Hectare) | Representative Value<br>(Kg/Hectare) | High<br>(Kg/Hectare) |
|-----------------|---------------------|--------------------------------------|----------------------|
| Grass/Grasslike | 8182                | 10088                                | 13899                |
| Forb            | 560                 | 897                                  | 1569                 |
| Shrub/Vine      | 112                 | 112                                  | 112                  |
| Tree            | 112                 | 112                                  | 112                  |
| Total           | 8966                | 11209                                | 15692                |

Figure 15. Plant community growth curve (percent production by month). OK0001, Native, Warm Season Grasses. Typically, the summer growing season for warm season grasses begins April 5 to 15 and ends October 15 to 25. Nearly three-fourths of the season production will occur before the first of July. This varies from year to year depending upon temperatures and precipitation..

| J | an | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|---|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0 |    | 1   | 5   | 10  | 20  | 30  | 10  | 5   | 10  | 6   | 2   | 1   |

# Community 1.2 Midgrass/Tallgrass

This plant community is dominated by a mixture of midgrasses and tallgrasses with the midgrasses more prevelant than the tallgrasses. There has been a decrease in the more palatable grasses such as eastern gamagrass, big bluestem and Indiangrass. These grasses have been replaced by an increase in secondary grasses including purpletop, knotroot bristlegrass, and tall dropseed. Western wheatgrass is more abundant in northern counties. Shortgrasses such as buffalograss and fall witchgrass are found in some areas. These changes have resulted in a reduction in herbage production on the site. The dominant perennial forbs are heathaster, Canada goldenrod, Baldwin ironweed and tall eupatorium. Heavy stands of annuals often occur after periods of close grazing. These annuals include seacoast sumpweed, common sunflower, giant ragweed, annual ragweed and marestail. Continuous overgrazing has reduced the fuel load and lessened the occurrence and subsequent benefits of prescribed burning. Shrubs, including buckbrush, blackberry, sumac and roughleaf dogwood are common. Tree species such as elm, hackberry, Osage orange and eastern redcedar are often scattered across the site. Prescribed burning coupled with prescribed grazing, involving deferment during all or a part of the growing season, will increase the desirable grasses. This site can be restored to near reference conditions in eight to twelve years.

#### Table 6. Annual production by plant type

| Plant Type      | Low<br>(Kg/Hectare) | Representative Value<br>(Kg/Hectare) | High<br>(Kg/Hectare) |
|-----------------|---------------------|--------------------------------------|----------------------|
| Grass/Grasslike | 4483                | 6165                                 | 7622                 |
| Forb            | 336                 | 560                                  | 897                  |
| Shrub/Vine      | 504                 | 673                                  | 673                  |
| Tree            | 280                 | 336                                  | 336                  |
| Total           | 5603                | 7734                                 | 9528                 |

Figure 17. Plant community growth curve (percent production by month). OK0001, Native, Warm Season Grasses. Typically, the summer growing season for warm season grasses begins April 5 to 15 and ends October 15 to 25. Nearly three-fourths of the season production will occur before the first of July. This varies from year to year depending upon temperatures and precipitation..

| Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 0   | 1   | 5   | 10  | 20  | 30  | 10  | 5   | 10  | 6   | 2   | 1   |

# Community 1.1 to 1.2

If the site is subjected to abusive grazing for multiple growing seasons and the more palatable tallgrass species are not allowed adequate recovery, the plant community will begin to transition to a Midgrass dominated plant community(1.2). This community shift may also occur as a result of long term drought as the Midgrass and Shortgrass species are better adapted to dry climates. This pathway is not a one-way street and it is important to remember that this community shift occurred often, historically, and represents the variability within this Reference Sate.

# Pathway 1.2A Community 1.2 to 1.1

With adequate rest from grazing pressure and favorable growing conditions, this plant community may be able to return to the reference plant community (1.1).

## State 2 Woody

The description for this plant community is derived from analysis of limited field data and professional consensus of range trained individuals. This plant community is a result of the absence of fire. Fire was an important element in suppressing woody plants during the ecological evolution of this site. So, when fire was suppressed for many years, the vegetative composition naturally and gradually shifted towards woody plant dominance. Areas protected from both fire and grazing for 20 to 30 years, or longer, have transitioned from open grassland to closed canopy woodland. Some areas, due to their juxtaposition to streams, were historically protected from reoccurring fires. Species composition of woody plants will vary from area to area. But generally, tree species will be bur oak, hackberry, elm, ash, sycamore or pecan. Eastern redcedar is becoming more prominent in this plant community. Shrubs and vines common to the site are buckbrush, sumac, blackberry, poison ivy, grape and greenbrier. Combined trees and shrubs may form an overstory canopy of 70 to 80 percent. The understory is dominated by shade tolerant plants such as Virginia wildrye, Canada wildrye, sedges, Scribner's panicum, Indian woodoats, sweet woodreed and various muhlys. Herbage production suitable for livestock use is limited. The site provides shelter for both livestock, deer and numerous small mammals. Many species of birds frequent this site.

#### **Dominant plant species**

- pecan (Carya illinoinensis), tree
- elm (Ulmus), tree
- hackberry (Celtis), tree
- eastern redcedar (Juniperus virginiana), tree
- coralberry (Symphoricarpos orbiculatus), shrub
- wildrye (Elymus), grass

## State 3 Converted

Many loamy bottomland sites have been cultivated over the past century in order to produce crops. Due to the level, deep loam soils, these sites are well suited for Ag production. Within this state, most woody species have been cleared in order to facilitate the access of farm machinery.

#### **Dominant plant species**

- wheat (Triticum), grass
- soybean (Glycine max), other herbaceous

# Transition T1A State 1 to 2

Without fire in the ecosystem, woody species may grow and reproduce unchecked. These species may be endemic (pecan, hackberry, etc.) or species introduced to the site by animals (eastern redcedar) or plantings (black locust/honey locust). These woody species have the ability to grow deep roots and locate resources within the soil

that herbaceous species may not have access to. This gives them a competitive edge for resources and allows them to expand across the landscape. As this woody encroachment occurs, the site may transition to state 2 where the woody species begin to dominate the ecological functions of the plant community.

# Transition T1B State 1 to 3

Many of these sites have been plowed for farming purposes over the last century. Once the site is cultivated, it transitions to an alternative state (3). The soils structure, organic matter, and biota have been altered and will no longer function the same as the soils in the reference state.

# Restoration pathway R2A State 2 to 1

A carefully planned program will restore the Woody state to a close resemblance to a grassland state. Because the woody community may be difficult to burn (but susceptible to wildfires), some brush management intervention will be needed. Brush management either mechanical, chemical or an integration of both, will allow sunlight energy and soil moisture to be used by tall grasses rather than invasive brush. Careful grazing management will be required for this plant community to be restored to the grassland state (1).

# Transition T2A State 2 to 3

Many of these sites have been plowed for farming purposes over the last century. Once the site is cultivated, it transitions to an alternative state (3). The soils structure, organic matter, and biota have been altered and will no longer function the same as the soils in the reference or woody state.

# Restoration pathway R3A State 3 to 1

Through carefully planned implementation of range seeding, prescribed grazing and rest, the cultivated state can be returned to a plant community similar to those in the reference state.

**Context dependence.** As a result of cultivation and soil erosion, soil properties are altered and ecological processes are changed. While permanent native vegetation can be re-established to a species mix similar to the reference state, often the site may never be restored ecologically to reference condition. This is especially true of sites that have experience a significant loss of the soil surface horizon. However, many sites have been restored to something very close the reference state and this should always be the target if full ecological restoration is the goal.

# Additional community tables

| Group | Common Name       | Symbol | Scientific Name         | Annual Production<br>(Kg/Hectare) | Foliar Cover<br>(%) |
|-------|-------------------|--------|-------------------------|-----------------------------------|---------------------|
| Grass | /Grasslike        |        |                         |                                   |                     |
| 1     |                   |        |                         | 7263–12554                        |                     |
|       | big bluestem      | ANGE   | Andropogon gerardii     | 2242–3923                         | _                   |
|       | Indiangrass       | SORGH  | Sorghastrum             | 1121–2242                         | _                   |
|       | eastern gamagrass | TRDA3  | Tripsacum dactyloides   | 1121–1681                         | _                   |
|       | prairie cordgrass | SPPE   | Spartina pectinata      | 560–1121                          | _                   |
|       | switchgrass       | PAVI2  | Panicum virgatum        | 560–1121                          | _                   |
| 2     |                   |        |                         | 363–628                           |                     |
|       | Florida paspalum  | PAFL4  | Paspalum floridanum     | 56–112                            | _                   |
|       | littla hluastam   | 2020   | Schizachvrium sconarium | 56_112                            | -                   |

Table 7. Community 1.1 plant community composition

|      |                          | 0000     | oomzaonynam soopanam                             | 50-112   |   |
|------|--------------------------|----------|--------------------------------------------------|----------|---|
|      | marsh bristlegrass       | SEPA10   | Setaria parviflora                               | 56–112   | _ |
| 3    |                          |          |                                                  | 363–628  |   |
|      | Indian woodoats          | CHLA5    | Chasmanthium latifolium                          | 11–56    | _ |
|      | Mexican muhly            | MUME2    | Muhlenbergia mexicana                            | 11–56    | _ |
|      | vine mesquite            | PAOB     | Panicum obtusum                                  | 11–56    | _ |
|      | thin paspalum            | PASE5    | Paspalum setaceum                                | 11–45    | _ |
|      | rice cutgrass            | LEOR     | Leersia oryzoides                                | 0–34     | _ |
|      | whitegrass               | LEVI2    | Leersia virginica                                | 11–22    | _ |
|      | longleaf woodoats        | CHSE2    | Chasmanthium sessiliflorum                       | 0–22     | _ |
|      | sweet woodreed           | CIAR2    | Cinna arundinacea                                | 0–22     | _ |
| 4    |                          | <u>.</u> |                                                  | 91–157   |   |
|      | composite dropseed       | SPCO16   | Sporobolus compositus                            | 11–78    | _ |
|      | purpletop tridens        | TRFL2    | Tridens flavus                                   | 11–56    | _ |
|      | fall witchgrass          | DICO6    | Digitaria cognata                                | 11–56    | _ |
|      | purple lovegrass         | ERSP     | Eragrostis spectabilis                           | 11–56    | _ |
|      | bushy bluestem           | ANGL2    | Andropogon glomeratus                            | 11–22    | _ |
|      | broomsedge bluestem      | ANVI2    | Andropogon virginicus                            | 11–22    | _ |
|      | silver bluestem          | BOSA     | Bothriochloa saccharoides                        | 11–22    | _ |
| 5    |                          |          |                                                  | 454–785  |   |
|      | Canada wildrye           | ELCA4    | Elymus canadensis                                | 112–280  | _ |
|      | Virginia wildrye         | ELVI3    | Elymus virginicus                                | 112–224  | _ |
|      | western wheatgrass       | PASM     | Pascopyrum smithii                               | 56–112   | _ |
|      | Texas bluegrass          | POAR     | Poa arachnifera                                  | 56–112   | _ |
|      | sedge                    | CAREX    | Carex                                            | 56–112   | _ |
|      | common spikerush         | ELPA3    | Eleocharis palustris                             | 22–67    | _ |
|      | Kentucky bluegrass       | POPR     | Poa pratensis                                    | 22–67    | _ |
|      | Scribner's rosette grass | DIOLS    | Dichanthelium oligosanthes var.<br>scribnerianum | 22–67    | _ |
|      | porcupinegrass           | HESP11   | Hesperostipa spartea                             | 22–56    | _ |
|      | Texas wintergrass        | NALE3    | Nassella leucotricha                             | 22–56    | _ |
|      | deertongue               | DICL     | Dichanthelium clandestinum                       | 22–45    | _ |
|      | winter bentgrass         | AGHY     | Agrostis hyemalis                                | 22–45    | _ |
| Forb | +                        | <u>.</u> |                                                  |          |   |
| 6    |                          |          |                                                  | 494–1412 |   |
|      | wholeleaf rosinweed      | SIIN2    | Silphium integrifolium                           | 224–336  | _ |
|      | sawtooth sunflower       | HEGR4    | Helianthus grosseserratus                        | 112–336  | _ |
|      | Maximilian sunflower     | HEMA2    | Helianthus maximiliani                           | 112–336  | _ |
|      | compassplant             | SILA3    | Silphium laciniatum                              | 112–224  | _ |
|      | cup plant                | SIPE2    | Silphium perfoliatum                             | 56–168   | _ |
|      | ashy sunflower           | HEMO2    | Helianthus mollis                                | 22–56    | _ |
|      | stiff sunflower          | HEPA19   | Helianthus pauciflorus                           | 22–56    | _ |
|      | Jerusalem artichoke      | HETU     | Helianthus tuberosus                             | 22–56    | _ |
|      | whitest evening          | OEAL     | Oenothera albicaulis                             | 11–56    | _ |

|   |                               | ·      |                                            |          |   |
|---|-------------------------------|--------|--------------------------------------------|----------|---|
|   | cobaea beardtongue            | PECO4  | Penstemon cobaea                           | 11–56    | _ |
|   | azure blue sage               | SAAZ   | Salvia azurea                              | 11–56    |   |
|   | fringeleaf wild petunia       | RUHU   | Ruellia humilis                            | 11–34    |   |
|   | prairie blazing star          | LIPY   | Liatris pycnostachya                       | 11–34    | _ |
|   | devil's bite                  | LISC2  | Liatris scariosa                           | 11–34    | - |
|   | prairie spiderwort            | TROC   | Tradescantia occidentalis                  | 11–34    | - |
|   | Culver's root                 | VEVI4  | Veronicastrum virginicum                   | 11–34    | - |
| 7 |                               | -      |                                            | 494–1412 |   |
|   | Canada goldenrod              | SOCA6  | Solidago canadensis                        | 11–67    | - |
|   | white heath aster             | SYER   | Symphyotrichum ericoides                   | 11–67    | - |
|   | Missouri goldenrod            | SOMI2  | Solidago missouriensis                     | 11–56    | - |
|   | tall thoroughwort             | EUAL3  | Eupatorium altissimum                      | 11–56    | - |
|   | Appalachian<br>mountainmint   | PYFL   | Pycnanthemum flexuosum                     | 11–56    | - |
|   | white crownbeard              | VEVI3  | Verbesina virginica                        | 11–56    | - |
|   | wingstem                      | VEAL   | Verbesina alternifolia                     | 11–56    |   |
|   | groovestem Indian<br>plantain | ARPL4  | Arnoglossum plantagineum                   | 11–56    | _ |
|   | false boneset                 | BREU   | Brickellia eupatorioides                   | 11–56    | - |
|   | Philadelphia fleabane         | ERPH   | Erigeron philadelphicus                    | 11–56    | - |
|   | largeflower tickseed          | COGR5  | Coreopsis grandiflora                      | 11–34    | - |
|   | Indian paintbrush             | CASTI2 | Castilleja                                 | 11–34    | - |
|   | tall thistle                  | CIAL2  | Cirsium altissimum                         | 11–34    | - |
|   | swamp milkweed                | ASIN   | Asclepias incarnata                        | 11–34    | - |
|   | prairie milkweed              | ASSU3  | Asclepias sullivantii                      | 11–34    | - |
|   | common milkweed               | ASSY   | Asclepias syriaca                          | 11–34    | - |
|   | butterfly milkweed            | ASTU   | Asclepias tuberosa                         | 11–34    | - |
|   | whorled milkweed              | ASVE   | Asclepias verticillata                     | 11–34    | _ |
|   | green antelopehorn            | ASVI2  | Asclepias viridis                          | 11–34    | - |
|   | Virginia threeseed<br>mercury | ACVI   | Acalypha virginica                         | 11–34    | - |
|   | Cuman ragweed                 | AMPS   | Ambrosia psilostachya                      | 11–34    | _ |
|   | Arkansas ironweed             | VEAR3  | Vernonia arkansana                         | 11–34    | _ |
|   | Baldwin's ironweed            | VEBA   | Vernonia baldwinii                         | 11–34    |   |
|   | golden zizia                  | ZIAU   | Zizia aurea                                | 11–34    |   |
|   | pinnate prairie<br>coneflower | RAPI   | Ratibida pinnata                           | 11–34    | _ |
|   | rough coneflower              | RUGR   | Rudbeckia grandiflora                      | 11–34    | _ |
|   | browneyed Susan               | RUTR2  | Rudbeckia triloba                          | 11–34    |   |
|   | stiff goldenrod               | OLRI   | Oligoneuron rigidum                        | 11–34    |   |
|   | downy phlox                   | PHPI   | Phlox pilosa                               | 11–34    |   |
|   | shorthair goldenrod           | SOCAG  | Solidago canadensis var.<br>gilvocanescens | 11–34    | _ |
|   | skyblue aster                 | SYOO   | Symphyotrichum oolentangiense              | 11–34    | _ |
|   | white arrowleaf aster         | SYUR   | Symphyotrichum urophyllum                  | 11–34    | _ |
|   | 0                             | TEAN   | T                                          | 44 04    |   |

|       | Canada germander           | IECAJ  | reucrium canaderise       | 11–34   | _ |
|-------|----------------------------|--------|---------------------------|---------|---|
|       | Nuttall's prairie parsley  | PONU4  | Polytaenia nuttallii      | 11–22   | _ |
|       | stiff marsh bedstraw       | GATI   | Galium tinctorium         | 11–22   | _ |
|       | cardinalflower             | LOCA2  | Lobelia cardinalis        | 11–22   | _ |
|       | great ragweed              | AMTR   | Ambrosia trifida          | 11–22   | _ |
|       | white doll's daisy         | BOAS   | Boltonia asteroides       | 11–22   | - |
|       | spotted water hemlock      | CIMA2  | Cicuta maculata           | 11–22   | - |
|       | wavyleaf thistle           | CIUN   | Cirsium undulatum         | 11–22   | - |
|       | poison hemlock             | COMA2  | Conium maculatum          | 11–22   | - |
|       | Queen Anne's lace          | DACA6  | Daucus carota             | 11–22   | - |
|       | field horsetail            | EQAR   | Equisetum arvense         | 11–22   | - |
|       | prairie fleabane           | ERST3  | Erigeron strigosus        | 11–22   | - |
| 8     |                            | -      |                           | 141–404 |   |
|       | Illinois bundleflower      | DEIL   | Desmanthus illinoensis    | 22–168  | _ |
|       | American licorice          | GLLE3  | Glycyrrhiza lepidota      | 22–112  | _ |
|       | littleleaf sensitive-briar | MIMI22 | Mimosa microphylla        | 22–112  | _ |
|       | prairie acacia             | ACAN   | Acacia angustissima       | 22–112  | _ |
|       | Canadian milkvetch         | ASCA11 | Astragalus canadensis     | 22–56   | _ |
|       | white wild indigo          | BAAL   | Baptisia alba             | 22–56   | _ |
|       | longbract wild indigo      | BABR2  | Baptisia bracteata        | 22–56   | _ |
|       | white prairie clover       | DACA7  | Dalea candida             | 22–56   | _ |
|       | purple dalea               | DALA4  | Dalea lasiathera          | 22–56   | - |
|       | slimflower scurfpea        | PSTE5  | Psoralidium tenuiflorum   | 22–56   | _ |
|       | roundhead lespedeza        | LECA8  | Lespedeza capitata        | 22–56   | _ |
|       | sessileleaf ticktrefoil    | DESE   | Desmodium sessilifolium   | 22–56   | _ |
| Shrub | /Vine                      | •      |                           |         |   |
| 9     |                            |        |                           | 0–112   |   |
|       | leadplant                  | AMCA6  | Amorpha canescens         | 22–112  | _ |
|       | winged sumac               | RHCO   | Rhus copallinum           | 22–112  | _ |
|       | smooth sumac               | RHGL   | Rhus glabra               | 22–112  | - |
|       | climbing rose              | ROSE2  | Rosa setigera             | 22–112  | _ |
|       | western poison ivy         | TORY   | Toxicodendron rydbergii   | 22–112  | _ |
|       | rusty blackhaw             | VIRU   | Viburnum rufidulum        | 22–56   | _ |
|       | grape                      | VITIS  | Vitis                     | 22–56   | _ |
|       | blackberry                 | RUBUS  | Rubus                     | 22–56   | _ |
|       | elderberry                 | SAMBU  | Sambucus                  | 22–56   | _ |
|       | saw greenbrier             | SMBO2  | Smilax bona-nox           | 22–56   | _ |
|       | Ohio buckeye               | AEGL   | Aesculus glabra           | 22–56   | _ |
|       | false indigo               | AMORP  | Amorpha                   | 22–56   | _ |
|       | pawpaw                     | ASTR   | Asimina triloba           | 22–56   | _ |
|       | buckbrush                  | CECU   | Ceanothus cuneatus        | 22–56   | _ |
|       | common buttonbush          | CEOC2  | Cephalanthus occidentalis | 22–56   | _ |
|       | Carolina coralbead         | COCA   | Cocculus carolinus        | 22–56   | _ |
|       | limber honeysuckle         | LODI2  | Lonicera dioica           | 22–56   | _ |

|      | yellow honeysuckle | LOFL   | Lonicera flava                              | 22–56  | - |
|------|--------------------|--------|---------------------------------------------|--------|---|
|      | Virginia creeper   | PAQU2  | Parthenocissus quinquefolia                 | 22–56  | _ |
|      | American plum      | PRAM   | Prunus americana                            | 22–56  | _ |
| Tree |                    |        | •                                           |        |   |
| 10   |                    |        |                                             | 0–112  |   |
|      | river birch        | BENI   | Betula nigra                                | 56–112 | - |
|      | pecan              | CAIL2  | Carya illinoinensis                         | 56–112 | _ |
|      | hybrid hickory     | CARYA  | Carya                                       | 56–112 | - |
|      | common hackberry   | CEOC   | Celtis occidentalis                         | 56–112 | _ |
|      | hawthorn           | CRATA  | Crataegus                                   | 56–112 | _ |
|      | white ash          | FRAM2  | Fraxinus americana                          | 56–112 | _ |
|      | black walnut       | JUNI   | Juglans nigra                               | 56–112 | _ |
|      | Osage-orange       | MAPO   | Maclura pomifera                            | 56–112 | _ |
|      | American sycamore  | PLOC   | Platanus occidentalis                       | 56–112 | _ |
|      | eastern cottonwood | PODE3  | Populus deltoides                           | 56–112 | _ |
|      | bur oak            | QUMA2  | Quercus macrocarpa                          | 56–112 | _ |
|      | post oak           | QUST   | Quercus stellata                            | 56–112 | _ |
|      | black oak          | QUVE   | Quercus velutina                            | 56–112 | _ |
|      | black willow       | SANI   | Salix nigra                                 | 56–112 | - |
|      | gum bully          | SILAL3 | Sideroxylon lanuginosum ssp.<br>Ianuginosum | 56–112 | _ |
|      | American elm       | ULAM   | Ulmus americana                             | 56–112 | _ |
|      | cedar elm          | ULCR   | Ulmus crassifolia                           | 56–112 | _ |
|      | slippery elm       | ULRU   | Ulmus rubra                                 | 56–112 | _ |

#### Table 8. Community 1.2 plant community composition

| Group | Common Name         | Symbol | Scientific Name           | Annual Production<br>(Kg/Hectare) | Foliar Cover<br>(%) |  |  |  |
|-------|---------------------|--------|---------------------------|-----------------------------------|---------------------|--|--|--|
| Grass | Jass/Grasslike      |        |                           |                                   |                     |  |  |  |
| 1     |                     |        |                           | 1800–2959                         |                     |  |  |  |
|       | big bluestem        | ANGE   | Andropogon gerardii       | 673–1345                          | _                   |  |  |  |
|       | switchgrass         | PAVI2  | Panicum virgatum          | 224–560                           | _                   |  |  |  |
|       | Indiangrass         | SORGH  | Sorghastrum               | 224–560                           | _                   |  |  |  |
|       | prairie cordgrass   | SPPE   | Spartina pectinata        | 56–112                            | _                   |  |  |  |
|       | eastern gamagrass   | TRDA3  | Tripsacum dactyloides     | 22–56                             | _                   |  |  |  |
| 2     |                     |        |                           | 1838–2690                         |                     |  |  |  |
|       | composite dropseed  | SPCO16 | Sporobolus compositus     | 336–1009                          | _                   |  |  |  |
|       | purpletop tridens   | TRFL2  | Tridens flavus            | 224–560                           | _                   |  |  |  |
|       | blue panicum        | PAAN4  | Panicum antidotale        | 224–560                           | _                   |  |  |  |
|       | little bluestem     | SCSC   | Schizachyrium scoparium   | 224–448                           | _                   |  |  |  |
|       | marsh bristlegrass  | SEPA10 | Setaria parviflora        | 112–448                           | _                   |  |  |  |
|       | Florida paspalum    | PAFL4  | Paspalum floridanum       | 112–336                           | _                   |  |  |  |
|       | broomsedge bluestem | ANVI2  | Andropogon virginicus     | 112–336                           | _                   |  |  |  |
|       | silver bluestem     | BOSA   | Bothriochloa saccharoides | 112–336                           | -                   |  |  |  |
|       | purple lovegrass    | ERSP   | Eragrostis spectabilis    | 112–336                           | _                   |  |  |  |

|      | vine mesquite              | PAOB   | Panicum obtusum                                  | 28–112  | _ |
|------|----------------------------|--------|--------------------------------------------------|---------|---|
|      | longspike tridens          | TRST2  | Tridens strictus                                 | 28–112  | _ |
| 3    |                            |        | •                                                | 245–404 |   |
|      | windmill grass             | CHLOR  | Chloris                                          | 28–224  | _ |
|      | fall witchgrass            | DICO6  | Digitaria cognata                                | 28–224  | _ |
| 4    |                            |        |                                                  | 573–942 |   |
|      | western wheatgrass         | PASM   | Pascopyrum smithii                               | 112–560 | _ |
|      | Texas bluegrass            | POAR   | Poa arachnifera                                  | 56–224  | _ |
|      | sedge                      | CAREX  | Carex                                            | 112–224 | _ |
|      | Canada wildrye             | ELCA4  | Elymus canadensis                                | 112–224 | _ |
|      | Virginia wildrye           | ELVI3  | Elymus virginicus                                | 56–224  | _ |
|      | Scribner's rosette grass   | DIOLS  | Dichanthelium oligosanthes var.<br>scribnerianum | 56–112  | _ |
|      | winter bentgrass           | AGHY   | Agrostis hyemalis                                | 56–112  | _ |
| 5    |                            |        |                                                  | 164–269 |   |
|      | cheatgrass                 | BRTE   | Bromus tectorum                                  | 22–112  | _ |
| Forb |                            |        |                                                  |         |   |
| 6    |                            |        |                                                  | 409–673 |   |
|      | tall thoroughwort          | EUAL3  | Eupatorium altissimum                            | 28–112  | _ |
|      | Canada goldenrod           | SOCA6  | Solidago canadensis                              | 28–112  | _ |
|      | Missouri goldenrod         | SOMI2  | Solidago missouriensis                           | 28–112  | _ |
|      | false gaura                | STLI2  | Stenosiphon linifolius                           | 28–112  | _ |
|      | white heath aster          | SYER   | Symphyotrichum ericoides                         | 28–112  | _ |
|      | wingstem                   | VEAL   | Verbesina alternifolia                           | 28–112  | _ |
|      | Arkansas ironweed          | VEAR3  | Vernonia arkansana                               | 28–112  | _ |
|      | Baldwin's ironweed         | VEBAB  | Vernonia baldwinii ssp. baldwinii                | 28–112  | _ |
|      | Cuman ragweed              | AMPS   | Ambrosia psilostachya                            | 56–112  | _ |
|      | white sagebrush            | ARLU   | Artemisia ludoviciana                            | 56–112  | _ |
|      | groovestem Indian plantain | ARPL4  | Arnoglossum plantagineum                         | 56–112  | _ |
|      | green antelopehorn         | ASVI2  | Asclepias viridis                                | 56–112  | _ |
|      | white crownbeard           | VEVI3  | Verbesina virginica                              | 28–112  | _ |
|      | blue wild indigo           | BAAU   | Baptisia australis                               | 22–56   | _ |
|      | hoary verbena              | VEST   | Verbena stricta                                  | 28–56   | _ |
| 7    |                            |        |                                                  | 82–135  |   |
|      | annual ragweed             | AMAR2  | Ambrosia artemisiifolia                          | 56–112  | _ |
|      | great ragweed              | AMTRT2 | Ambrosia trifida var. trifida                    | 56–112  | _ |
|      | field horsetail            | EQAR   | Equisetum arvense                                | 56–112  | _ |
| Shru | b/Vine                     |        |                                                  |         |   |
| 8    |                            |        |                                                  | 504–673 |   |
|      | buckbrush                  | CECU   | Ceanothus cuneatus                               | 56–448  | _ |
|      | roughleaf dogwood          | CODR   | Cornus drummondii                                | 56–336  | _ |
|      | winged sumac               | RHCO   | Rhus copallinum                                  | 56–336  | _ |
|      | smooth sumac               | PHCI   | Bhua alabra                                      | E6_226  |   |

|      | blackberry        | RUBUS  | Rubus                                       | 56–336  | - |
|------|-------------------|--------|---------------------------------------------|---------|---|
|      | common buttonbush | CEOC2  | Cephalanthus occidentalis                   | 560–112 | _ |
| Tree |                   | -      |                                             |         |   |
| 9    |                   |        |                                             | 279–336 |   |
|      | common hackberry  | CEOC   | Celtis occidentalis                         | 28–112  | - |
|      | white ash         | FRAM2  | Fraxinus americana                          | 28–112  | _ |
|      | eastern redcedar  | JUVI   | Juniperus virginiana                        | 28–112  | - |
|      | Osage-orange      | MAPO   | Maclura pomifera                            | 28–112  | - |
|      | American sycamore | PLOC   | Platanus occidentalis                       | 28–112  | _ |
|      | bur oak           | QUMA2  | Quercus macrocarpa                          | 28–112  | _ |
|      | elm               | ULMUS  | Ulmus                                       | 28–112  | - |
|      | gum bully         | SILAL3 | Sideroxylon lanuginosum ssp.<br>Ianuginosum | 28–56   | _ |

## **Animal community**

Numerous animal and bird species utilize this site as habitat. Small mammals, song birds, predators, along with traditional game species such as turkey, bobwhite quail, whitetail deer, mule deer, and others frequent this site. The combination of grasses, forbs, trees and woody shrubs that occur in the presumed historic plant community provide suitable habitat for all the above species, at least at some time during the year. Surface water, in the form of ponds, springs, and flowing streams provide water for species that require daily watering. Many different species move in and out of the site. Predators such as coyotes and bobcats may utilize the site for hunting prey and hiding during the day.

#### Hydrological functions

These sites occur on floodplains and drainageways on deep, alluvial soils. These areas receive run-on water from adjacent upland sites. Run off is usually slow due to the low slopes of the floodplain. The presence of deep rooted tallgrasses can help facilitate percolation of water into the soil profile.

#### **Recreational uses**

Hunting, Fishing, Camping, Hiking, Bird Watching, Photography, Horseback Riding, etc..

#### Wood products

There are limited wood products taken from this site. Trees can be used for most wood products indigenous to the species. Several species of trees are found on this site, but there is seldom any harvesting of wood products other than firewood for cooking, heat and fence posts.

#### Other products

Fruits, blackberries, other berries and pecans are harvested from this site.

#### Other information

NA

#### Inventory data references

The OK 551 Data Records are forms used in Oklahoma that preceded the 417 form. Data below is arranged in columns of:

Data Source Form Number: Number of Records: Sample Period: State: County: 551 5 1957 OK Osage

551 1 1958 OK Osage 551 4 1959 OK Osage 551 12 1960 OK Washington 551 1 1960 OK Osage 551 9 1961 OK Washington 551 1 1961 OK Osage 551 1 1962 OK Washington 551 5 1962 OK Osage 551 1 1962 OK Bryan 551 1 1963 OK Jefferson 551 3 1963 OK Washington 551 1 1963 OK Osage 551 2 1964 OK Washington 551 2 1964 OK Osage 551 3 1965 OK Osage 551 1 1965 OK Washington 551 1 1966 OK Washington 551 2 1966 OK Osage 417 1 1968 OK Osage 417 1 1971 OK Noble 417 1 1972 OK Grant

# **Type locality**

| Location 1: Lincoln County, OK |                                                                                                                                                  |  |  |  |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| General legal description      | Lincoln County, Oklahoma; about 1 mile east of Harrah; about 4,000 feet south and 900 feet east of northwest corner of sec. 30, T. 12 N., R. 2 E |  |  |  |  |

#### References

Scholtz, R. and . 2018. Grassland fragmentation and its influence on woody plant cover in the southern Great Plains, USA. Landscape Ecology 33:1785–1797.

#### **Other references**

This "Approved" site was included in an update project during 2013. The State&Transition model was re-formatted and the ESD was edited to fit the new ESIS format. The concepts and vegetative data contained therein was not altered. The entire ESD will be reviewed, updated, and subjected to the QC/QA processes as part of a future project. CW

USDA-NRCS (Formerly Soil Conservation Service) Range Site Descriptions (1960s)

USDA-NRCS (Formerly Soil Conservation Service) Ag Handbook 296 (2006)

#### Contributors

Edits by Colin Walden, Range Specialist, Stillwater, OK Dr. Jack Eckroat, Grazing Lands Specialist, NRCS, Oklahoma Harland Dietz, Range Conservationist, NRCS, Oklahoma, (Retired)

#### Approval

Bryan Christensen, 9/19/2023

#### Acknowledgments

Site Development and Testing Plan

Future work, as described in a Project Plan, to validate the information in this Provisional Ecological Site Description is needed. This will include field activities to collect low, medium and high intensity sampling, soil correlations, and analysis of that data. Annual field reviews should be done by soil scientists and vegetation specialists. A final field review, peer review, quality control, and quality assurance reviews of the ESD will be needed to produce the final document.

Annual reviews of the Project Plan are to be conducted by the Ecological Site Technical Team.

#### Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

| Author(s)/participant(s)                    | Mark Moseley, Kay Anderson, Jack Eckroat, Harry Fritzler, Steve Glasgow |
|---------------------------------------------|-------------------------------------------------------------------------|
| Contact for lead author                     | 100 USDA Suite 206<br>Stillwater, OK 74074                              |
| Date                                        | 04/01/2005                                                              |
| Approved by                                 | Colin Walden                                                            |
| Approval date                               |                                                                         |
| Composition (Indicators 10 and 12) based on | Annual Production                                                       |

#### Indicators

- 1. **Number and extent of rills:** This site usually has flatter slopes. There are few, if any, rills (only in lowest area where flooding occurs) and there is no active headcutting and sides are covered with vegetation
- 2. **Presence of water flow patterns:** There is some evidence of soil deposition or erosion (particularly after a flood event). Water generally flows evenly over the entire landscape.
- 3. Number and height of erosional pedestals or terracettes: There should not be any evidence of erosional pedestals or terracettes on this site.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): There is 0-5% bare ground on this site. Bare areas are small and not connected.
- 5. Number of gullies and erosion associated with gullies: Usually none. Most drainages are represented as natural stable channels; vegetation is common with no signs of erosion. Some nick points can occur where trees are uprooted from floods.

- Amount of litter movement (describe size and distance expected to travel): Uniform distribution of litter. Litter rarely
  moves >12 inches on flatter slopes and may be as much as doubled on steeper slopes, then only during high intensity
  storms.
- Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Surface soil is stabilized (Stability Score 5 6). Stability scores based on a minimum of 6 samples tested.
- Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Ap horizon: 0 to 7 inches; dark grayish brown silt loam, weak fine granular structure. A horizon: 7 to 21 inches; dark grayish brown silt loam, moderate fine and medium granular structure.

Refer to specific description for component sampled.

- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Infiltration and runoff are not affected by any changes in plant community composition and distribution. (Tallgrass dominated). Any changes in infiltration and runoff can be attributed to other factors (e.g. compaction)
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): There is usually no compaction layer.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Tallgrasses Midgrasses

Sub-dominant: Forbs Cool-Season Perennial Grasses

Other: Shortgrasses, Shrubs, Trees

Additional:

- Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): There is some plant mortality and decadence on the perennial grasses, especially in the absence of fire and herbivory, but usually <5%.</li>
- 14. Average percent litter cover (%) and depth ( in): Litter should cover 50 75% of the area between plants with accumulations of .5 1 inches deep.

production): Reference production is 8,000-14,000 pounds per year.

- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: No invasive species. Invasives might include: eastern redcedar, locust, salt cedar, Russian olive, annuals and non-natives. Also mesquite in the south.
- 17. **Perennial plant reproductive capability:** All plants capable of reproducing at least every year. Seed stalks, stalk length and seedheads are numerous and what would be expected. Overall health of plants is what would be expected.