

Ecological site F094AB028MI Dry Sandy Slopes

Last updated: 2/18/2025 Accessed: 02/20/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 094A-Northern Michigan Sandy Highlands

"This area is dominated by outwash plains and moraines. The terrain can be steep on the moraines and flat in the areas of outwash. Elevation ranges from 177 to 520 m (580 to 1705 ft). Local topographic relief averages 14 m and ranges up to 188 m (45 to 615 ft). This area is covered entirely by drift. Bedrock consisting of Devonian limestone and dolomite with interbedded shale, chert, and anhydrite stringers is at various depths below the surface because of the curvature of the Michigan basin. However, bedrock exposures completely absent, as the depth of glacial drift ranges from 60 to 300 m (200-1000 ft). The Au Sable, Manistee, Au Gres, and Pine Rivers are the major streams draining this MLRA, in both the Lake Michigan and Lake Huron watersheds. The Muskegon River has its headwaters in this area.

About 70 percent of this area is forested, and about 15 percent is cropland or hayland. About one-third of the area is in small, privately owned holdings, and another one-third consists of national and State forests. The forests are used mainly for timber production and recreation. Dairy and beef operations are very important enterprises in the area. Forage and feed grains for dairy cattle and other livestock are the principal crops. Wheat, oats, corn, potatoes, and hay also are grown in the area. The Huron and Manistee National Forests, Hartwick Pines State Park, Camp Grayling (Department of Defense), Pigeon River Country State Forest are among the most notable conservation lands in the area. Reaches of the Au Sable and Pine Rivers are National Wild and Scenic Rivers.

Summary of existing land use: Upland Forest (58%) Hardwood (41%) Conifer (15%) Swamps and Marshes (14%) Developed (11%) Agricultural (10%) Grassland (5%)

Classification relationships

According to the USFS (Bailey) system of ecoregions, the site is located mostly within 212Hg (Kirtland's Warbler High Sand Plains) and 212Hh (Gladwin Silty Lake Plain) subsections. According to the EPA (Omernik) system of ecoregions, the site is located in 50ae (Mio Plateau), 50ah (Tawas Lake Plain) and eastern 50ad (Vanderbilt Moraines) level IV ecoregions. This site roughly cooresponds to PVCd, in the Kotar system. This site cooresponds to the Outwash Plains ecological land type phases 10-12, in the USFS Ecological Land Type system.

Ecological site concept

The central concept of Dry Sandy Plains is uplands lacking a seasonal water table (excessively drained to

moderately well drained), lacking significant B horizon development in the soil profile, and on broadly flat landscapes with less than 15% slopes. Site occurs on sandy drift (outwash, ice contact, or lake plains) where soil textures are sand or loamy sand (upper 50 cm >70% sand). Site is outside the heavy snowfall belt, mostly east of Houghton Lake where fire was frequent. Vegetation trending towards xerophytic woodlands and barrens with a high fire frequency.

Associated sites

F094AB018MI Rich Sandy Drift Rich Sandy Drift has a greater amount of spodic development, which indirectly indicates high productivity, or has higher pH, which drives higher productivity. Vegetation is similar.		
F094AB020MI	Acidic Sandy Depression Acidic Sandy Depression has a seasonally high water table, either moderately well drained or somewhat poorly drained. Consequently, there can be a transition to wetland species or higher cover of wintergree	
F094AB019MI	Dry Sandy Plains Dry Sandy Plains has a lower topographic roughness which tends to increase the size of wildfires. Consequently, there is more jack pine and less white pine and oak.	

Similar sites

F094AA006MI	Snowy Sandy Drift Snowy Sandy Drift has a greater amount of annual snowfall, which leads to longer fire interval. Consequently, there is more white pine and northern hardwoods and less jack pine.	
F094AB019MI	Dry Sandy Plains Dry Sandy Plains has a lower topographic roughness which tends to increase the size of wildfires. Consequently, there is more jack pine and less white pine and oak.	

Table 1. Dominant plant species

Tree	(1) Pinus strobus (2) Quercus rubra
Shrub	Not specified
Herbaceous	(1) Pteridium aquilinum

Physiographic features

Site occurs mostly on sandy outwash plains, with minor amounts of coarse textured ice contact, glacial till, and lake plain deposits with similar properties. Landforms are mostly gently sloping, but there are no upper limits to slope defined.

Table 2. Representative physiographic features

Landforms	(1) Kame (2) Ice-contact slope
Runoff class	Negligible to medium
Elevation	581–1,572 ft
Slope	15–45%
Water table depth	59 in
Aspect	W, NW, N, NE, E, SE, S, SW

Climatic features

Mean annual temperatures are 5.7 to 7.6 °C (42 to 46 °F). The warmest six months average 14.3 to 16.1 °C (58 to 61 °F). Mean July temperatures range from 19.1 to 20.8 °C (66 to 69 °F). Mean January temperatures range from -8.2 to -6.0 °C (17 to 21 °F). The maximum monthly average daily highs are 25.9 to 27.7 °C (79 to 82 °F). The

minimum monthly average daily lows are -13.2 to -10.7 °C (8 to 13 °F). Temperatures generally decrease with elevation and latitude. Mean annual precipitation ranges from 700 to 870 mm (28 to 34 in). Precipitation decreases from west to east. Average 0 °C (32 °F) frost-free season ranges from 73 to 144 days. Average -2 °C (28 °F) freeze-free season is 106 to 172 days. Mean annual snowfall ranges from 1.1 to 2.9 m (40 to 120 in). Snowfall decreases from northwest to southeast. Mean annual extreme minimum temperatures range from -33.3 to -23.1 °C (-28 to -10 °F), or hardiness zones 4a to 6a.

Table 3. Representative climatic features

Frost-free period (characteristic range)	76-110 days	
Freeze-free period (characteristic range)	119-143 days	
Precipitation total (characteristic range)	29-31 in	
Frost-free period (actual range)	52-113 days	
Freeze-free period (actual range)	114-150 days	
Precipitation total (actual range)	28-33 in	
Frost-free period (average)	92 days	
Freeze-free period (average)	133 days	
Precipitation total (average)	30 in	

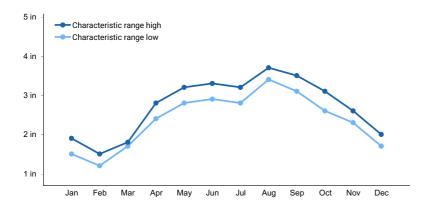


Figure 1. Monthly precipitation range

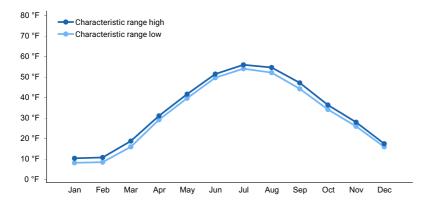


Figure 2. Monthly minimum temperature range

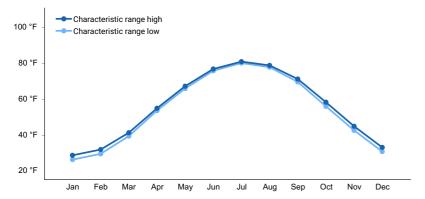


Figure 3. Monthly maximum temperature range

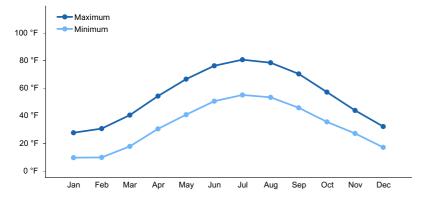


Figure 4. Monthly average minimum and maximum temperature

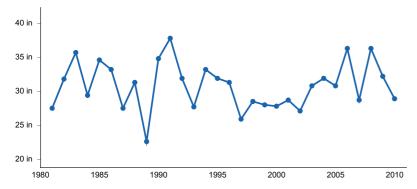


Figure 5. Annual precipitation pattern

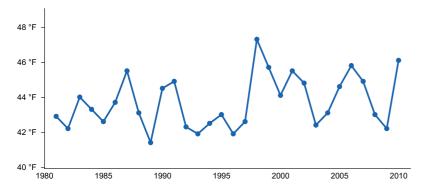


Figure 6. Annual average temperature pattern

Climate stations used

- (1) EAST TAWAS [USC00202423], Tawas City, MI
- (2) GRAYLING [USC00203391], Grayling, MI
- (3) MIO HYDRO PLT [USC00205531], Mio, MI

- (4) VANDERBILT 11ENE [USC00208417], Vanderbilt, MI
- (5) HOUGHTON LK ROSCOMMON AP [USW00094814], Houghton Lake, MI
- (6) HALE LOUD DAM [USC00203529], Glennie, MI
- (7) WEST BRANCH 3SE [USC00208800], West Branch, MI

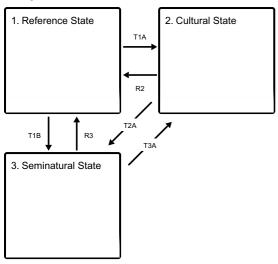
Influencing water features

No seasonal water table is expected.

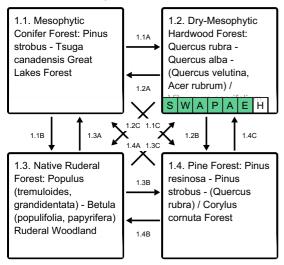
Soil features

Soils are well drained to excessively well drained sands. They are commonly classified Lamellic Udipsamments, Typic Udipsamments, and Arenic Glossudalfs, and commonly mapped as Graycalm, Grayling, and Typic Udipsamments series or components. The top 50 cm has a typical pH of 5 and is 90% sand and 0.8% organic matter. At depth, pH ranges up to 5.8, and texture averages 90% sand and 5% clay. Depth to impeded hydraulic conductivity or root restrictive layers averages >200 cm. Depth to carbonates averages >200 cm.

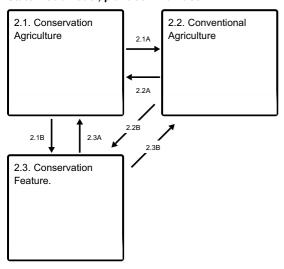
Table 4. Representative soil features

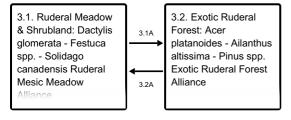

Parent material	(1) Outwash	
Surface texture	(1) Sand	
Drainage class	Excessively drained to well drained	
Permeability class	Moderately rapid to rapid	
Soil depth	79 in	
Surface fragment cover <=3"	0–1%	
Surface fragment cover >3"	0%	
Available water capacity (0-39.4in)	1.57–3.94 in	
Soil reaction (1:1 water) (0-19.7in)	3.5–6	
Subsurface fragment volume <=3" (0-59.1in)	0–10%	
Subsurface fragment volume >3" (0-59.1in)	0–5%	

Ecological dynamics


Dry Sandy Slopes tends to share the same ecological dynamics as Natureserve/Landfire system, Laurentian-Acadian Northern Pine(-Oak) Forest. Stand replacing fires occurred every 150-600 years, with light surface fires every 30-115 years. Overstory was dominated by fire dependent, early successional pine (Pinus spp.) or oak (Quercus spp.). Understory is composed of shade-tolerant, acid-tolerant forbs such as Canada mayflower (Maianthemum canadense). Kotar community, PArVVb (Pinus strobus-Acer rubrum/Vaccinium spp.-Viburnum acerifolium), understory indicator species include: Acer saccharum, Aralia nudicaulis, Eurybia macrophylla, Galium triflorum, Gaultheria procumbens, Hamamelis virginiana, Lonicera canadensis, Lysimachia borealis, Maianthemum canadense, Mitchella repens, Polygaloides paucifolia, Polygonatum pubescens, Pteridium aquilinum, Trillium grandiflorum, Vaccinium angustifolium, and Viburnum acerifolium (Sugar Maple, Wild Sarsaparilla, Big-leaved Aster, Fragrant Bedstraw, Teaberry, Witch-hazel, Canadian Fly Honeysuckle, Star-flower, Canada Mayflower, Partridge-berry, Fringed Polygala, Downy Solomon's-seal, Bracken Fern, Great White Trillium, Northern Lowbush Blueberry, and Maple-leaved Viburnum).

State and transition model


Ecosystem states


State 1 submodel, plant communities

State 2 submodel, plant communities

State 3 submodel, plant communities

State 1 Reference State

Community 1.1

Mesophytic Conifer Forest: Pinus strobus - Tsuga canadensis Great Lakes Forest

Community 1.2 Dry-Mesophytic Hardwood Forest: Quercus rubra - Quercus alba - (Quercus velutina, Acer rubrum) / Viburnum acerifolium Forest

Resilience management. This is an oak dominated variant which has become more prevalent after harvesting of pine followed by wildfire which kills regenerating pine. Over time, without fire, the stand will gradually become more dominated by red maple through a process of mesophication as it is more shade tolerant and more fire sensitive than oak. Too much maple will render the stand less flammable, crossing a threshold towards an alternative mesophytic state.

Table 5. Canopy structure (% cover)

Height Above Ground (Ft)	Tree	Shrub/Vine	Grass/ Grasslike	Forb
<0.5	_	5-7%	9-13%	0-5%
>0.5 <= 1	4-15%	7-24%	9-13%	6-13%
>1 <= 2	4-15%	2-22%	-	6-13%
>2 <= 4.5	0%	0-6%	-	_
>4.5 <= 13	14-27%	_	_	_
>13 <= 40	49-65%	_	-	_
>40 <= 80	60-70%	_	_	_
>80 <= 120	-	_	-	_
>120	-	_	_	_

Community 1.3

Native Ruderal Forest: Populus (tremuloides, grandidentata) - Betula (populifolia, papyrifera) Ruderal Woodland

Community 1.4

Pine Forest: Pinus resinosa - Pinus strobus - (Quercus rubra) / Corylus cornuta Forest

Pathway 1.1A

Community 1.1 to 1.2

Blowdown/clearcut followed by fire a few years after, destroying conifer regeneration, deferentially favoring oak regeneration.

Conservation practices

Prescribed Burning

Forest Stand Improvement

Pathway 1.1B Community 1.1 to 1.3

Blowdown/clearcut

Conservation practices

Early Successional Habitat Development/Management

Forest Stand Improvement

Pathway 1.1C Community 1.1 to 1.4

Crown fire, or blowdown/clearcut with fire in close succession.

Conservation practices

Prescribed Burning

Forest Stand Improvement

Pathway 1.2A Community 1.2 to 1.1

Succession

Pathway 1.2C Community 1.2 to 1.3

Blowdown/clearcut

Pathway 1.2B Community 1.2 to 1.4

Crown fire, or blowdown/clearcut with fire in close succession.

Conservation practices

Prescribed Burning

Forest stand improvement for habitat and soil quality

Pathway 1.3A Community 1.3 to 1.1

Succession

Conservation practices

Tree/Shrub Site Preparation

Tree/Shrub Establishment

Pathway 1.3C Community 1.3 to 1.2

Succession if fire consumed any subsequent pine regeneration.

Pathway 1.3B Community 1.3 to 1.4

Light fire removes the leaf litter, allowing for pine seedlings to establish followed by succession.

Pathway 1.4A Community 1.4 to 1.1

Succession.

Pathway 1.4C Community 1.4 to 1.2

Blowdown/clearcut followed by fire a few years after, destroying conifer regeneration, deferentially favoring oak regeneration.

Pathway 1.4B Community 1.4 to 1.3

Blowdown, clearcut, or crown fire, with establishment of clonal tree species.

State 2 Cultural State

Site is generally undesirable to farm due to steep slopes, short growing season, and infertile soil.

Community 2.1 Conservation Agriculture

Community 2.2 Conventional Agriculture

Community 2.3 Conservation Feature.

Can be a grassed waterway, conservation reserve, a small patch pollinator garden, or other land taken out of its primary cultural production to mitigate or reduce impacts of adjacent land use, and is not by itself a permanent restoration of a complete native biological community and associated ecosystem services.

Pathway 2.1A Community 2.1 to 2.2

Apply unsustainable farming techniques.

Pathway 2.1B Community 2.1 to 2.3 Establish conservation feature.

Conservation practices

Conservation Cover

Grassed Waterway

Pathway 2.2A Community 2.2 to 2.1

Apply sustainable farming techniques.

Conservation practices

Conservation Crop Rotation	
Cover Crop	
Nutrient Management	
Integrated Pest Management (IPM)	

Pathway 2.2B Community 2.2 to 2.3

Establish conservation feature.

Conservation practices

Conservation Cover
Grassed Waterway

Pathway 2.3A Community 2.3 to 2.1

Revert to sustainable agriculture.

Conservation practices

Conservation Crop Rotation	
Cover Crop	
Nutrient Management	
Integrated Pest Management (IPM)	

Pathway 2.3B Community 2.3 to 2.2

Revert to unsustainable agriculture.

State 3 Seminatural State

Vegetation consists of a mix of native and non-native species.

Community 3.1

Ruderal Meadow & Shrubland: Dactylis glomerata - Festuca spp. - Solidago canadensis

Ruderal Mesic Meadow Alliance

Community 3.2

Exotic Ruderal Forest: Acer platanoides - Ailanthus altissima - Pinus spp. Exotic Ruderal Forest Alliance

Pathway 3.1A Community 3.1 to 3.2

Succession

Pathway 3.2A Community 3.2 to 3.1

Blowdown/clearcut

Transition T1A State 1 to 2

Clear vegetation; cultivate domesticated species

Transition T1B State 1 to 3

Clear vegetation, invasive species introduced

Restoration pathway R2 State 2 to 1

Remove domesticated species; restore native species

Conservation practices

Brush Management
Tree/Shrub Site Preparation
Tree/Shrub Establishment
Restoration and Management of Rare and Declining Habitats
Upland Wildlife Habitat Management
Herbaceous Weed Control

Transition T2A State 2 to 3

Abandoned, succession

Restoration pathway R3 State 3 to 1

Control invasive species; restore native species

Conservation practices

Brush Management	
	Tree/Shrub Site Preparation
	Tree/Shrub Establishment

Restoration and Management of Rare and Declining Habitats	
Upland Wildlife Habitat Management	
Herbaceous Weed Control	

Transition T3A State 3 to 2

Clear vegetation; cultivate domesticated species

Additional community tables

Table 6. Community 1.2 forest overstory composition

Common Name	Symbol	Scientific Name	Nativity	Height (Ft)	Canopy Cover (%)	Diameter (In)	Basal Area (Square Ft/Acre)
Tree							
northern red oak	QURU	Quercus rubra	Native	45.9–69.2	40.7–58.7	11.4–16.1	1
red maple	ACRU	Acer rubrum	Native	32.8–57.4	3–38.3	5.1–14.6	1
red maple	ACRU	Acer rubrum	Native	19.7–39.4	19.3–24.7	_	-
eastern white pine	PIST	Pinus strobus	Native	6.6–26.2	0–8	_	-
white oak	QUAL	Quercus alba	Native	32.8–62.3	0–5.3	13.8–15	-

Table 7. Community 1.2 forest understory composition

Common Name	Symbol	Scientific Name	Nativity	Height (Ft)	Canopy Cover (%)
Grass/grass-like (Graminoids)	- _		<u> </u>	<u> </u>	
Pennsylvania sedge	CAPE6	Carex pensylvanica	Native	0.3-0.7	9.2–10.1
roughleaf ricegrass	ORAS	Oryzopsis asperifolia	Native	0.3-0.7	0–1.5
rosette grass	DICHA2	Dichanthelium	Native	0.7–1.6	0–0.1
eastern bottlebrush grass	ELHY	Elymus hystrix	Native	0.7–1.6	0–0.1
Forb/Herb		•			
starflower	TRBO2	Trientalis borealis	Native	0-0.3	0-4.7
Canada mayflower	MACA4	Maianthemum canadense	Native	0-0.3	0–2.1
wood anemone	ANQU	Anemone quinquefolia	Native	0.7–1.6	0-0.6
narrowleaf cowwheat	MELI2	Melampyrum lineare	Native	0-0.3	0.1–0.4
bigleaf aster	EUMA27	Eurybia macrophylla	Native	0.7–1.6	0–0.1
feathery false lily of the valley	MARA7	Maianthemum racemosum	Native	0.3-0.7	0–0.1
Fern/fern ally		•			
western brackenfern	PTAQ	Pteridium aquilinum	Native	0.7–1.6	7–9.7
Shrub/Subshrub	-			<u> </u>	
lowbush blueberry	VAAN	Vaccinium angustifolium	Native	0.7–1.6	0–24
lowbush blueberry	VAAN	Vaccinium angustifolium	Native	1.3–2.6	0–7.3
eastern teaberry	GAPR2	Gaultheria procumbens	Native	0.3-0.7	4.3–7
mapleleaf viburnum	VIAC	Viburnum acerifolium	Native	0.7–1.6	0-0.8
black huckleberry	GABA	Gaylussacia baccata	Native	0.7–1.6	0-0.1
Tree	-			<u> </u>	
red maple	ACRU	Acer rubrum	Native	0.7–1.6	0–16
red maple	ACRU	Acer rubrum	Native	8.2–16.4	0–14
eastern white pine	PIST	Pinus strobus	Native	8.2–16.4	0–13.3
American witchhazel	HAVI4	Hamamelis virginiana	Native	8.2–16.4	0–3.3
common serviceberry	AMAR3	Amelanchier arborea	Native	0.7–1.6	0–2.3
American witchhazel	HAVI4	Hamamelis virginiana	Native	0.7–1.6	0–1.5
white oak	QUAL	Quercus alba	Native	0.7–1.6	0.5–1.5
black cherry	PRSE2	Prunus serotina	Native	0.7–1.6	0.1–0.7
bigtooth aspen	POGR4	Populus grandidentata	Native	0.7–1.6	0-0.3
red pine	PIRE	Pinus resinosa	Native	8.2–16.4	0-0.1
white ash	FRAM2	Fraxinus americana	Native	0.7–1.6	0-0.1
red pine	PIRE	Pinus resinosa	Native	0.7–1.6	0-0.1
northern red oak	QURU	Quercus rubra	Native	0.7–1.6	0.1
eastern white pine	PIST	Pinus strobus	Native	0.7–1.6	0-0.1
white oak	QUAL	Quercus alba	Native	8.2–16.4	0-0.1
Vine/Liana					
limber honeysuckle	LODI2	Lonicera dioica	Native	0.7–1.6	0-0.3
Nonvascular				•	
Moss	2MOSS	Moss	Native	_	0-0.3

Verification data was collected in 2024 from 3 sites representing one community phase.

Approval

Nels Barrett, 2/18/2025

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	02/20/2025
Approved by	Nels Barrett
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

m	ndicators			
1.	Number and extent of rills:			
2.	Presence of water flow patterns:			
3.	Number and height of erosional pedestals or terracettes:			
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):			
5.	Number of gullies and erosion associated with gullies:			
6.	Extent of wind scoured, blowouts and/or depositional areas:			
7.	Amount of litter movement (describe size and distance expected to travel):			
•				

8. Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):

Э.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
17	Perennial plant reproductive capability: