

Ecological site R108XC522IA Terrace Savanna

Last updated: 7/01/2019 Accessed: 05/04/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 108X-Illinois and Iowa Deep Loess and Drift

The Illinois and Iowa Deep Loess and Drift, West-Central Part (MLRA 108C) encompasses the eastern portion of the Southern Iowa Drift Plain and the Lake Calvin basin of the Mississippi Alluvial Plain landforms (Prior 1991). It lies entirely in one state (Iowa), containing approximately 9,805 square miles (Figure 1). The elevation ranges from approximately 1,110 feet above sea level (ASL) on the highest ridges to about 505 feet ASL in the lowest valleys. Local elevation difference is mainly 10 to 20 feet. However, some valley floors can range from 80 to 200 feet, while some upland flats and valley floors only range between 3 and 6 feet. The MLRA is underlain by Pre-Illinoian glacial till, deposited more than 500,000 years ago and since undergone extensive erosion and dissection. In the northern half of the area the till thickness ranges from 150 to 350 feet and grades to less than 150 feet thick in the southern half. The till is covered by a mantle of Peoria Loess on the hillslopes and Holocene alluvium in the drainageways. Paleozoic bedrock, comprised of limestone, shale, and mudstones, lies beneath the glacial material (USDA-NRCS 2006).

The vegetation in the MLRA has undergone drastic changes over time. Spruce forests dominated the landscape 30,000 to 21,500 years ago. As the last glacial maximum peaked 21,500 to 16,000 years ago, they were replaced with open tundras and parklands. The end of the Pleistocene Epoch saw a warming climate that initially prompted the return of spruce forests, but as the warming continued, spruce trees were replaced by deciduous trees (Baker et al. 1990). Not until approximately 9,000 years ago did the vegetation transition to prairies as climatic conditions continued to warm and subsequently dry. Between 4,000 and 3,000 years ago, oak savannas began intermingling within the prairie landscape, while the more wooded and forested areas maintained a foothold in sheltered areas. This prairie-forest transition ecosystem formed the dominant landscapes until the arrival of European settlers (Baker et al. 1992).

Classification relationships

USFS Subregions: Central Dissected Till Plains (251C) Section, Central Dissected Till and Loess Plain (251Cc), Mississippi River and Illinois Alluvial Plains (51Cf), Southeast Iowa Rolling Loess Hills (251Ch) Subsections (Cleland et al. 2007)

U.S. EPA Level IV Ecoregion: Rolling Loess Prairies (47f), Upper Mississippi Alluvial Plain (72d) (USEPA 2013)

National Vegetation Classification – Ecological Systems: North-Central Interior Oak Savanna (CES202.698) (NatureServe 2015)

National Vegetation Classification - Plant Associations: *Quercus macrocarpa* – Quercus bicolor – (Celtis occidentalis) Woodland (CEGL002140) (Nature Serve 2015)

Biophysical Settings: North-Central Interior Oak Savanna (BpS 4213940) (LANDFIRE 2009)

Ecological site concept

Terrace Savannas are located within the green areas on the map (Figure 1). They occur on low stream terraces on floodplains. The soils are Alfisols and Mollisols that are somewhat poorly to well-drained and deep, formed in alluvium. The site can experience rare flooding from precipitation, surface runoff, and overbank flow.

The historic pre-European settlement vegetation on this ecological site was dominated by an herbaceous understory with scattered trees. White oak (Quercus alba L.) and eastern cottonwood (Populus deltoides W. Bartram ex Marshall) are the dominant and characteristic trees species, respectively, and Virginia wildrye (Elymus virginicus L.) and Davis' sedge (Carex davisii Schwein. & Torr.) are common monocots of Terrace Savannas (Delong and Hooper 1996; Dettman et al. 2009; NatureServe 2015). Shrubs and vines can form an important component of the understory, including species such as American plum (Prunus americana Marshall), smooth sumac (Rhus glabra L.), and American bittersweet (Celastrus scandens L.) (Delong and Hooper 1996; Dettman et al. 2009). In the east, the highly conservative American witchhazel (Hamamelis virginiana L.) can be indicative of an undisturbed savanna community (Drobney et al. 2001; Dettman et al. 2009). Fire and infrequent flooding are the primary disturbance factors that maintain this site, while herbivory and drought are secondary factors (Dettman et al. 2009; LANDFIRE 2009).

Associated sites

R108XC506IA	Sandy Upland Prairie Eolian sandy deposits on uplands and high stream terraces including Bolan, Broadwell, Dickinson, Pillot, and Sparta soils	
R108XC523IA	Wet Terrace Sedge Meadow Alluvial parent material that is shallow to the water table on low stream terraces including Bremer, Coppock, Niota variant, Okaw, Tuskeego, and Udolpho soils	
R108XC526IA	Floodplain Prairie Alluvial parent material on floodplains including Ankeny, Hanlon, Huntsville, and Kennebec soils	

Similar sites

R108XC504IA	Loess Upland Savanna Loess Upland Savannas are similar in vegetative structure but occur on non-flooded uplands on loess parent material
R108XC507IA	Sandy Upland Savanna Sandy Upland Savannas are similar in vegetative structure but occur on non-flooded uplands on eolian sandy deposits
R108XC511IA	Till Backslope Savanna Till Backslope Savannas are similar in vegetative structure but occur on non-flooded uplands on glacial till parent material

Table 1. Dominant plant species

Tree	(1) Quercus alba (2) Populus deltoides	
Shrub	Not specified	
Herbaceous	(1) Elymus virginicus (2) Carex davisii	

Physiographic features

Terrace Savannas occur on low stream terraces in river valleys (Figure 2). They are situated on elevations ranging

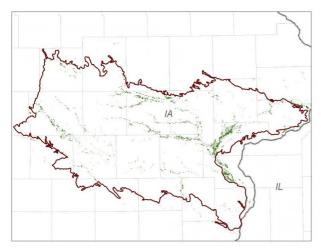


Figure 2. Figure 1. Location of Terrace Savanna ecological site within MLRA 108C.

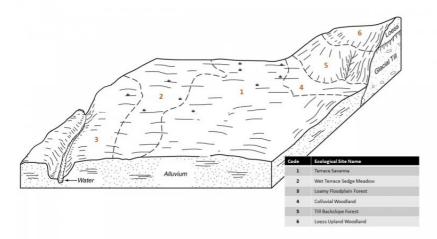


Figure 3. Figure 2. Representative block diagram of Terrace Savanna and associated ecological sites.

Slope shape across	(1) Linear	
Slope shape up-down	(1) Convex (2) Linear	
Landforms	(1) River valley > Terrace	
Runoff class	Low	
Flooding duration	Brief (2 to 7 days)	
Flooding frequency	Rare	
Elevation	122–610 m	
Slope	0–5%	
Water table depth	30–203 cm	
Aspect	Aspect is not a significant factor	

Table 2. Representative physiographic features

Climatic features

The Illinois and Iowa Deep Loess and Drift, West-Central Part falls into the hot humid continental climate (Dfa) Köppen-Geiger climate classification (Peel et al. 2007). In winter, dry, cold air masses periodically shift south from Canada. As these air masses collide with humid air, snowfall and rainfall result. In summer, moist, warm air masses from the Gulf of Mexico migrate north, producing significant frontal or convective rains. Occasionally, hot, dry winds

originating from the Desert Southwest will stagnate over the region, creating extended droughty periods in the summer from unusually high temperatures. Air masses from the Pacific Ocean can also spread into the region and dominate producing mild, dry weather in the autumn known as Indian Summers (NCDC 2006).

The soil temperature regime of MLRA 108C is classified as mesic, where the mean annual soil temperature is between 46 and 59°F (USDA-NRCS 2006). Temperature and precipitation occur along a north-south gradient, where temperature and precipitation increase the further south one travels. The average freeze-free period of this ecological site is about 178 days, while the frost-free period is about 157 days (Table 2). The majority of the precipitation occurs as rainfall in the form of convective thunderstorms during the growing season. Average annual precipitation is approximately 39 inches, which includes rainfall plus the water equivalent from snowfall (Table 3). The average annual low and high temperatures are 38 and 60°F, respectively.

Climate data and analyses are derived from 30-year averages gathered from four National Oceanic and Atmospheric Administration (NOAA) weather stations contained within the range of this ecological site (Table 4).

Frost-free period (characteristic range)	132-143 days
Freeze-free period (characteristic range)	161-174 days
Precipitation total (characteristic range)	940-965 mm
Frost-free period (actual range)	132-148 days
Freeze-free period (actual range)	157-182 days
Precipitation total (actual range)	914-965 mm
Frost-free period (average)	138 days
Freeze-free period (average)	168 days
Precipitation total (average)	940 mm

Table 3. Representative climatic features

Climate stations used

- (1) IOWA CITY [USC00134101], Iowa City, IA
- (2) OSKALOOSA [USC00136327], Oskaloosa, IA
- (3) BELLE PLAINE [USC00130600], Belle Plaine, IA
- (4) MARSHALLTOWN [USC00135198], Marshalltown, IA

Influencing water features

Terrace Savannas may be classified as a RIVERINE: bottomland, rarely flooded, herbaceous wetland under the Hydrogeomorphic (HGM) classification system (Smith et al. 1995; USDA-NRCS 2008). Overbank flow from the stream, subsurface hydraulic connections, overland flow from adjacent uplands, and precipitation are the main sources of water for this ecological site (Smith et al. 1995). Infiltration is moderate to very slow (Hydrologic Groups B, C, and D) for undrained soils, and surface runoff is low (Figure 5).

Wetland hydrology indicators may be present on undrained Terrace Savannas (e.g., A1 Surface water) but are not indicative of wetland hydrology due to the flooding frequency being less than 50 percent (USACE 2010).

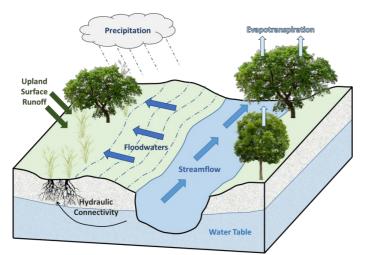


Figure 8. Figure 5. Hydrologic cycling in Terrace Savanna ecological site.

Soil features

Soils of Terrace Savannas are in the Alfisols and Mollisols orders, further classified as Mollic Hapludalfs, Typic Hapludalfs, Udollic Endoaqualfs, Aquic Argiudolls, Aquic Hapludolls, Aquic Pachic Argiudolls, Pachic Arigudolls, Typic Argiudolls, and Typic Hapludolls with very slow to moderate infiltration and low runoff potential. The soil series associated with this site includes Ainsworth, Canoe, Ella, Elrin, Festina, Hoopeston, Jackson, Koszta, Nevin, Raddle, Richwood, Rowley, Snider, Watkins, and Wiota (Figure 6). The parent material is alluvium, and the soils are somewhat poorly to well-drained and deep. Soil pH classes are strongly acid to neutral. No rooting restrictions are noted for the soils of this ecological site (Table 5).

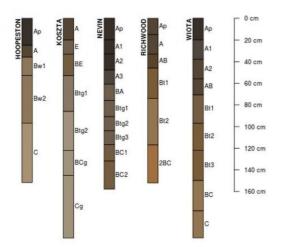


Figure 9. Figure 6. Profile sketches of soil series associated with Terrace Savanna.

Parent material	(1) Alluvium	
Family particle size	(1) Fine-silty	
Drainage class	Somewhat poorly drained to well drained	
Permeability class	Very slow to slow	
Soil depth	203 cm	

Ecological dynamics

The information in this Ecological Site Description, including the state-and-transition model (STM), was developed based on historical data, current field data, professional experience, and a review of the scientific literature. As a result, all possible scenarios or plant species may not be included. Key indicator plant species, disturbances, and

ecological processes are described to inform land management decisions.

The MLRA lies within the transition zone between the eastern deciduous forests and the tallgrass prairies. The heterogeneous topography of the area results in variable microclimates and fuel matrices that in turn are able to support prairies, savannas, woodlands, and forests. Terrace Savannas form an aspect of this vegetative continuum. This ecological site occurs on low stream terraces on floodplains on somewhat poorly to well-drained soils. Species characteristic of this ecological site consist of a mix of herbaceous vegetation with scattered trees.

Fire and rare flooding are critical disturbance factors that maintain Terrace Savannas. Fire intensity typically consisted of periodic fires occurring every 1 to 5 years (LANDFIRE 2009). Ignition sources included summertime lightning strikes from convective storms and bimodal, human ignitions during the spring and fall seasons. Native Americans regularly set fires to improve sight lines for hunting, driving large game, improving grazing and browsing habitat, agricultural clearing, and enhancing vital ethnobotanical plants (Barrett 1980; White 1994). Infrequent flooding influenced plant community composition as evidenced by the co-dominance of oak species with floodplain associated species (Dettman et al. 2009).

Drought and herbivory by native ungulates have also played a role in shaping this ecological site. The periodic episodes of reduced soil moisture in conjunction with the somewhat poorly to well-drained soils have favored the proliferation of plant species tolerant of such conditions. Drought can also slow the growth of plants and result in dieback of certain species. Bison (Bos bison) grazing, while present, served a more limited role in community composition and structure than lands further west. Prairie elk (Cervus elaphus) and white-tailed deer (Odocoileus virginianus) likely contributed to woody species reduction but are also considered to be of a lesser impact compared to the west (LANDFIRE 2009). When coupled with fire, periods of drought and herbivory can further delay the establishment of woody vegetation (Pyne et al. 1996).

Today, Terrace Savannas may be extirpated from the MLRA as a result of type-conversions to agricultural production lands. A return to the historic plant community may not be possible following extensive land modification, but long-term conservation agriculture or savanna reconstruction can help to restore some biotic diversity and ecological function. The state-and-transition model that follows provides a detailed description of each state, community phase, pathway, and transition. This model is based on available experimental research, field observations, literature reviews, professional consensus, and interpretations.

STATE 1 – REFERENCE STATE

The reference plant community is categorized as a lowland savanna community, dominated by herbaceous vegetation with scattered trees. The two community phases within the reference state are dependent on fire and infrequent flooding. The frequency, intensity, and duration of these disturbances alter species composition, cover, and extent. Surface fires are the dominant fire regime, comprising approximately 96 percent of all fires and occurring every five years. Mixed and replacement fires comprise the remaining 4 percent, occurring approximately every 3 and 1 years, respectively (LANDFIRE 2009). Flooding was infrequent, occurring once every 20 to 100 years, and influenced tree canopy composition. Drought and herbivory have more localized impacts in the reference phases, but do contribute to overall species composition, diversity, cover, and productivity.

Community Phase 1.1 White Oak – Eastern Cottonwood/Virginia Wildrye – Davis' Sedge – Sites in this reference community phase are dominated by a mix of grasses and sedges with scattered trees. Oaks are the predominant genus, including white oak, black oak (*Quercus velutina* Lam.), bur oak (*Quercus macrocarpa* Michx.), chinquapin oak (*Quercus muehlenbergii* Engelm.), and northern red oak (*Quercus rubra* L.). Lowland species, however, are a significant component of the canopy and include eastern cottonwood, American sycamore (*Platanus occidentalis* L.), elms (Ulmus L.), and maples (Acer L.) (Dettman et al. 2009). The tree layer comprises no more than 20 percent cover and tree size class is medium (9 to 21-inch DBH). Vegetative cover is continuous (up to 100 percent) and can include a mix of grasses and sedges including Virginia wildrye and Davis' sedge. Surface fires every 5 years will maintain this class, but an extended fire return interval will shift the community to phase 1.2 (LANDFIRE 2009).

Pathway 1.1A – Extended fire return interval in excess of 5 years.

Community Phase 1.2 White Oak – Eastern Cottonwood/American Plum – American Bittersweet/Virginia Wildrye – Davis' Sedge – This reference community phase represents a successional shift as a result of an extended fire

return interval. This fire-free period allows woody shrubs and vines to establish, including American plum, American bittersweet, smooth sumac, eastern poison ivy (*Toxicodendron radicans* (L.) Kuntze), and burningbush (*Euonymus atropurpureus* Jacq.) (Delong and Hooper 1996; Dettman et al. 2009; NatureServe 2015). Tree cover increases to as much as 60 percent, and tree size class moves from medium to large (21 to 33-inch DBH). Surface fires every 5 years will maintain this class, but mixed or replacement fires will shift the community back to phase 1.1 (LANDFIRE 2009).

Pathway 1.2A – Mixed or replacement fire.

Transition 1A – Cultural treatments to enhance forage quality and yield transitions the site to the forage state (2).

Transition 1B – Tillage, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (3).

STATE 2 – FORAGE STATE

The forage state occurs when the site is converted to a farming system that emphasizes domestic livestock production known as grassland agriculture. Fire suppression, periodic cultural treatments (e.g., clipping, drainage, soil amendment applications, planting new species and/or cultivars, mechanical harvesting) and grazing by domesticated livestock transition and maintain this state (USDA-NRCS 2003). Early settlers seeded non-native species, such as smooth brome (*Bromus inermis* Leyss.) and Kentucky bluegrass (*Poa pratensis* L.), to help extend the grazing season (Smith 1998). Over time, as lands were continuously harvested or grazed by herds of cattle, the non-native species were able to spread and expand across the landscape, reducing the native species diversity and ecological function.

Community Phase 2.1 Hayfield – Sites in this community phase consist of forage plants that are planted and mechanically harvested. Mechanical harvesting removes much of the aboveground biomass and nutrients that feed the soil microorganisms (Franzluebbers et al. 2000; USDA-NRCS 2003). As a result, soil biology is reduced leading to decreases in nutrient uptake by plants, soil organic matter, and soil aggregation. Frequent biomass removal can also reduce the site's carbon sequestration capacity (Skinner 2008).

Pathway 2.1A – Mechanical harvesting is replaced with domestic livestock utilizing continuous grazing.

Pathway 2.1B – Mechanical harvesting is replaced with domestic livestock utilizing rotational grazing.

Community Phase 2.2 Continuous Pastured Grazing System – This community phase is characterized by continuous grazing where domestic livestock graze a pasture for the entire season. Depending on stocking density, this can result in lower forage quality and productivity, weed invasions, and uneven pasture use. Continuous grazing can also increase the amount of bare ground and erosion and reduce soil organic matter, cation exchange capacity, water-holding capacity, and nutrient availability and retention (Bharati et al. 2002; Leake et al. 2004; Teague et al. 2011). Smooth brome, Kentucky bluegrass, and white clover (*Trifolium repens* L.) are common pasture species used in this phase. Their tolerance to continuous grazing has allowed these species to dominate, sometimes completely excluding the native vegetation.

Pathway 2.2A – Domestic livestock are removed, and mechanical harvesting is implemented.

Pathway 2.2B – Rotational grazing replaces continuous grazing.

Community Phase 2.3 Rest-Rotation Pastured Grazing System – This community phase is characterized by rotational grazing where the pasture has been subdivided into several smaller paddocks. Through the development of a grazing plan, livestock utilize one or a few paddocks, while the remaining area is rested allowing plants to restore vigor and energy reserves, deepen root systems, develop seeds, as well as allow seedling establishment (Undersander et al. 2002; USDA-NRCS 2003). Rest-rotation pastured grazing systems include deferred rotation, rest rotation, high intensity – low frequency, and short duration methods. Vegetation is generally more diverse and can include orchardgrass (*Dactylis glomerata* L.), timothy (Phleum pretense L.), red clover (*Trifolium pratense* L.), and alfalfa (*Medicago sativa* L.). The addition of native prairie species can further bolster plant diversity and, in turn, soil function. This community phase promotes numerous ecosystem benefits including increasing biodiversity,

preventing soil erosion, maintaining and enhancing soil quality, sequestering atmospheric carbon, and improving water yield and quality (USDA-NRCS 2003).

Pathway 2.3A – Continuous grazing replaces rotational grazing.

Pathway 2.3B – Domestic livestock are removed, and mechanical harvesting is implemented.

Transition 2A – Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (3).

Restoration 2A – Site preparation, tree planting, invasive species control, and seeding native species transition this site to the reconstructed savanna state (4).

STATE 3 – CROPLAND STATE

The low topographic relief across the MLRA has resulted in nearly the entire area being converted to agriculture (Eilers and Roosa 1994). The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and oats (Avena L.) and alfalfa (*Medicago sativa* L.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.

Community Phase 3.1 Conventional Tillage Field – Sites in this community phase typically consist of monoculture row-cropping maintained by conventional tillage practices. They are cropped in either continuous corn or cornsoybean rotations. The frequent use of deep tillage, low crop diversity, and bare soil conditions during the nongrowing season negatively impacts soil health. Under these practices, soil aggregation is reduced or destroyed, soil organic matter is reduced, erosion and runoff are increased, and infiltration is decreased, which can ultimately lead to undesirable changes in the hydrology of the watershed (Tomer et al. 2005).

Pathway 3.1A – Tillage operations are greatly reduced, crop rotation occurs on a regular interval, and crop residue remains on the soil surface.

Pathway 3.1B – Tillage operations are greatly reduced or eliminated, crop rotation occurs on a regular interval, crop residue remains on the soil surface, and cover crops are planted following crop harvest.

Community Phase 3.2 Conservation Tillage Field – This community phase is characterized by rotational crop production that utilizes various conservation tillage methods to promote soil health and reduce erosion. Conservation tillage methods include strip-till, ridge-till, vertical-till, or no-till planting systems. Strip-till keeps seedbed preparation to narrow bands less than one-third the width of the row where crop residue and soil consolidation are left undisturbed in-between seedbed areas. Strip-till planting may be completed in the fall and nutrient application either occurs simultaneously or at the time of planting. Ridge-till uses specialized equipment to create ridges in the seedbed and vegetative residue is left on the surface in between the ridges. Weeds are controlled with herbicides and/or cultivation, seedbed ridges are rebuilt during cultivation, and soils are left undisturbed from harvest to planting. Vertical-till systems employ machinery that lightly tills the soil and cuts up crop residue, mixing some of the residue into the top few inches of the soil while leaving a large portion on the surface. No-till management is the most conservative, disturbing soils only at the time of planting and fertilizer application. Compared to conventional tillage systems, conservation tillage methods can improve soil ecosystem function by reducing soil erosion, increasing organic matter and water availability, improving water quality, and reducing soil compaction.

Pathway 3.2A – Intensive tillage is utilized, and monoculture row-cropping is established.

Pathway 3.2B – Cover crops are implemented to minimize soil erosion.

Community Phase 3.3 Conservation Tillage with Cover Crop Field – This community phase applies conservation tillage methods as described above as well as adds cover crop practices. Cover crops typically include nitrogenfixing species (e.g., legumes), small grains (e.g., rye, wheat, oats), or forage covers (e.g., turnips, radishes, rapeseed). The addition of cover crops not only adds plant diversity but also promotes soil health by reducing soil erosion, limiting nitrogen leaching, suppressing weeds, increasing soil organic matter, and improving the overall soil ecosystem. In the case of small grain cover crops, surface cover and water infiltration are increased, while forage covers can be used to graze livestock or support local wildlife. Of the three community phases for this state, this phase promotes the greatest soil sustainability and improves ecological functioning within a cropland system.

Pathway 3.3A – Cover crop practices are abandoned.

Pathway 3.3B – Intensive tillage is utilized, cover crops practices are abandoned, monoculture row-cropping is established, and crop rotation is reduced or eliminated.

Transition 3A – Cultural treatments to enhance forage quality and yield transitions the site to the forage state (2).

Restoration 3A – Site preparation, tree planting, invasive species control, and seeding native species transition this site to the reconstructed savanna state (4).

STATE 4 – RECONSTRUCTED SAVANNA STATE

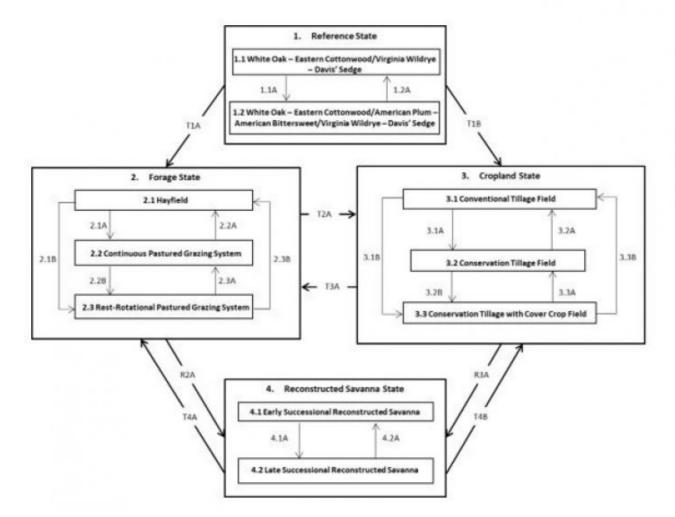
Savanna reconstructions have become an important tool for repairing natural ecological functions and providing habitat protection for numerous grassland dependent species. Because the historic plant and soil biota communities of the tallgrass prairie were highly diverse with complex interrelationships, historic savanna replication cannot be guaranteed on landscapes that have been so extensively manipulated for extended timeframes (Kardol and Wardle 2010; Fierer et al. 2013). Therefore, ecological restoration should aim to aid the recovery of degraded, damaged, or destroyed ecosystems. A successful restoration will have the ability to structurally and functionally sustain itself, demonstrate resilience to the natural ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002). The reconstructed savanna state is the result of a long-term commitment involving a multi-step, adaptive management process. Tree plantings may be required in order to reproduce the overstory canopy (Asbjornsen et al. 2005; Dettman and Mabry 2008). Diverse, species-rich seed mixes may be important to utilize as they allow the site to undergo successional stages that exhibit changing composition and dominance over time (Smith et al. 2010). On-going management via prescribed fire and/or light grazing can help the site progress from an early successional community dominated by annuals and some weeds to a later seral stage composed of native perennial grasses, forbs, shrubs, and eventually mature bur oaks. Establishing a prescribed fire regime that mimics natural disturbance patterns can increase native species cover and diversity while reducing cover of nonnative forbs and grasses. Light grazing alone can help promote species richness, while grazing accompanied with fire can control the encroachment of undesirable woody vegetation (Brudvig et al. 2007).

Community Phase 4.1 Early Successional Reconstructed Savanna – This community phase represents early community assembly and is highly dependent on the timing and priority of planting and/or tree thinning operations and the herbaceous seed mix utilized. If oak planting is needed, acorns should be planted shortly after harvest as acorns germinate shortly after seedfall and require no cold stratification. Browse protection may need to be installed to protect newly established seedlings from animal predation (Gucker 2011). If selective tree removal is needed, canopy reduction should encompass between 16 to 45 percent of the undesirable species in a single year (Asbjornsen et al. 2005). The seed mix should look to include a diverse mix of native cool-season and warm-season annual and perennial grasses and forbs typical of the reference state. Native, cool-season annuals can help to provide litter that promotes cool, moist soil conditions to the benefit of the other species in the seed mix. The first season following site preparation and seeding will typically result in annuals and other volunteer species forming a majority of the vegetative cover. Control of non-native species, particularly perennial species, is crucial at this point in order to ensure they do not establish before the native vegetation (Martin and Wilsey 2012). After the first season, native warm-season grasses should begin to become more prominent on the landscape and over time close the canopy.

Pathway 4.1A – Selective herbicides are used to control non-native species, and prescribed fire and/or light grazing help to increase the native species diversity and control non-oak woody vegetation.

Community Phase 4.2 Late Successional Reconstructed Savanna – Appropriately timed disturbance regimes (e.g., prescribed fire) applied to the early successional community phase can help increase the beta diversity, pushing the site into a late successional community phase over time. While oak savanna communities are dominated by grasses, these species can suppress forb establishment and reduce overall diversity and ecological functioning

(Martin and Wilsey 2006; Williams et al. 2007). Reducing accumulated plant litter from such tallgrasses as big bluestem and Indiangrass allows more light and nutrients to become available for forb recruitment, allowing for greater ecosystem complexity (Wilsey 2008). Prescribed fire should be used on a cycle no less than every five years in order to allow the oaks to establish and mature (Gucker 2011).


Pathway 4.2B – Reconstruction experiences a decrease in native species diversity from drought or improper timing of management actions (e.g., reduced fire frequency, use of non-selective herbicides).

Transition 4A – Cultural treatments to enhance forage quality and yield transition the site to the forage state (2).

Transition 4B – Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (3).

State and transition model

R108CY522IA TERRACE SAVANNA

Code	Process
1.1A	Extended fire return interval in excess of 5 years
1.2A	Mixed or replacement fire
T1A, T3A, T4A	Cultural treatments are implemented to increase forage quality and yield
2.1A	Mechanical harvesting is replaced with domestic livestock and continuous grazing
2.1B	Mechanical harvesting is replaced with domestic livestock and rest-rotational grazing
2.2A, 2.3B	Domestic livestock grazing is replaced with mechanical harvesting
2.2B	Implementation of rest-rotational grazing
2.3B	Implementation of continuous grazing
T1B, T2A, T4B	Agricultural conversion via tillage, seeding, and non-selective herbicide
3.1A	Less tillage, residue management
3.1B	Less tillage, residue management, and implementation of cover cropping
3.2B	Implementation of cover cropping
3.2A, 3.3B	Intensive tillage, remove residue, reinitiate monoculture row cropping
3.3A	Remove cover cropping
R2A, R3A	Site preparation, non-native species control, and native seeding
4.1A	Invasive species control and implementation of disturbance regimes
4.2A	Drought or improper timing/use of management actions

Inventory data references

No field plots were available for this site. A review of the scientific literature and professional experience were used to approximate the plant communities for this provisional ecological site. Information for the state-and-transition model was obtained from the same sources. All community phases are considered provisional based on these plots and the sources identified in ecological site description.

Other references

Asbjornsen, H., L.A. Brudvig, C.M. Mabry, C.W. Evans, and H.M. Karnitz. 2005. Defining reference information for restoring ecologically rare tallgrass oak savannas in the midwestern United States. Journal of Forestry 103: 345-350.

Baker, R.G., C.A. Chumbley, P.M. Witinok, and H.K. Kim. 1990. Holocene vegetational changes in eastern lowa. Journal of the Iowa Academy of Science 97: 167-177.

Baker, R.G., L.J. Maher, C.A. Chumbley, and K.L. Van Zant. 1992. Patterns of Holocene environmental changes in the midwestern United States. Quaternary Research 37: 379-389.

Barrett, S.W. 1980. Indians and fire. Western Wildlands Spring: 17-20.

Bharati, L., K.-H. Lee, T.M. Isenhart, and R.C. Schultz. 2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agroforestry Systems 56: 249-257.

Brudvig, L.A., C.M. Mabry, J.R. Miller, and T.A. Walker. 2007. Evaluation of central North American prairie management based on species diversity, life form, and individual species metrics. Conservation Biology 21: 864-874.

Cleland, D.T., J.A. Freeouf, J.E. Keys, G.J. Nowacki, C. Carpenter, and W.H. McNab. 2007. Ecological Subregions: Sections and Subsections of the Coterminous United States. USDA Forest Service, General Technical Report WO-76. Washington, DC. 92 pps.

Delong, K.T. and C. Hooper. 1996. A potential understory flora for oak savanna in Iowa. Journal of the Iowa Academy of Science 103: 9-28.

Dettman, C.L. and C.M. Mabry. 2008. Lessons learned about research and management: a case study from a Midwest lowland savanna, U.S.A. Restoration Ecology 16: 532-541.

Dettman, C.L., C.M. Mabry, and L.A. Schulte. 2009. Restoration of midwestern U.S. Savannas: one size does not fit all. Restoration Ecology 17: 772-783.

Drobney, P.D., G.S. Wilhelm, D. Horton, M. Leoschke, D. Lewis, J. Pearson, D. Roosa, and D. Smith. 2001. Floristic Quality Assessment for the State of Iowa. Neal Smith National Wildlife Refuge and Ada Hayden Herbarium, Iowa State University, Ames, IA. 123 pps.

Eilers, L. and D. Roosa. 1994. The Vascular Plants of Iowa: An Annotated Checklist and Natural History. University of Iowa Press, Iowa City, IA. 319 pps.

Fierer, N., J. Ladau, J.C. Clemente, J.W. Leff, S.M. Owens, K.S. Pollard, R. Knight, J.A. Gilbert, and R.L. McCulley. 2013. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342: 621-624.

Franzluebbers, A.J., J.A. Stuedemann, H.H. Schomberg, and S.R. Wilkinson. 2000. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA. Soil Biology and Biochemistry 32:469-478.

Karol, P. and D.A. Wardle. 2010. How understanding aboveground-belowground linkages can assist restoration ecology. Trends in Ecology and Evolution 25: 670-679.

LANDFIRE. 2009. Biophysical Setting 4213940 North-Central Interior Oak Savanna. In: LANDFIRE National Vegetation Dynamics Models. USDA Forest Service and US Department of Interior. Washington, DC.

Leake, J., D. Johnson, D. Donnelly, G. Muckle, L. Boddy, and D. Read. 2004. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Canadian Journal of Botany 82: 1016-1045.

Martin, L.M. and B.J. Wilsey. 2006. Assessing grassland restoration success: relative roles of seed additions and native ungulate activities. Journal of Applied Ecology 43: 1098-1110.

Martin, L.M. and B.J. Wilsey. 2012. Assembly history alters alpha and beta diversity, exotic-native proportions and functioning of restored prairie plant communities. Journal of Applied Ecology 49: 1436-1445.

National Climate Data Center [NCDC]. 2006. Climate of Iowa. Central Region Headquarters, Climate Services Branch, National Climatic Data Center, Asheville, NC.

NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1 NatureServe, Arlington, VA. Available at http://explorer.natureserve.org. (Accessed 13 February 2017).

Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644.

Prior, J.C. 1991. Landforms of Iowa. University of Iowa Press for the Iowa Department of Natural Resources, Iowa City, IA. 153 pps.

Pyne, S.J., P.L. Andrews, and R.D. Laven. 1996. Introduction to Wildland Fire, Second Edition. John Wiley and Sons, Inc. New York, New York. 808 pps.

Skinner, R.H. 2008. High biomass removal limits carbon sequestration potential of mature temperate pastures. Journal for Environmental Quality 37: 1319-1326.

Smith, R.D., A. Ammann, C. Bartoldus, and M.M. Brinson. 1995. An Approach for Assessing Wetland Functions Using Hydrogeomorphic Classification, Reference Wetlands, and Functional Indices. U.S. Army Corps of Engineers, Waterways Experiment Station, Wetlands Research Program Technical Report WRP-DE-9. 78 pps.

Smith, D.D. 1998. Iowa prairie: original extent and loss, preservation, and recovery attempts. The Journal of the Iowa Academy of Sciences 105: 94-108.

Smith, D.D., D. Williams, G. Houseal, and K. Henderson. 2010. The Tallgrass Prairie Center Guide to Prairie Restoration in the Upper Midwest. University of Iowa Press, Iowa City, IA. 338 pps.

Society for Ecological Restoration [SER] Science & Policy Working Group. 2002. The SER Primer on Ecological Restoration. Available at: http://www.ser.org/. (Accessed 28 February 2017).

Teague, W.R., S.L. Dowhower, S.A. Baker, N. Haile, P.B. DeLaune, and D.M. Conover. 2011. Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agriculture, Ecosystems and Environment 141: 310-322.

Tomer, M.D., D.W. Meek, and L.A. Kramer. 2005. Agricultural practices influence flow regimes of headwater streams in western Iowa. Journal of Environmental Quality 34:1547-1558.

Undersander, D., B. Albert, D. Cosgrove, D. Johnson, and P. Peterson. 2002. Pastures for Profit: A Guide to Rotational Grazing (A3529). University of Wisconsin-Extension and University of Minnesota Extension Service. 43 pps.

U.S. Army Corps of Engineers [USACE]. 2010. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest Region (Version 2.0). U.S. Army Corps of Engineers, Wetlands Regulatory Assistance Program, U.S. Army Engineer Research and Development Center, Vicksburg, MS. 141 pps.

United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). 2003. National Range and Pasture Handbook, Revision 1. Grazing Lands Technology Institute. 214 pps.

United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S.

Department of Agriculture Handbook 296. 682 pps.

United States Department of Agriculture – Natural Resource Conservation Service (USDA-NRCS). 2008. Hydrogeomorphic Wetland Classification: An Overview and Modification to Better Meet the Needs of the Natural Resources Conservation Service. Technical Note No. 190-8-76. Washington, D.C. 8 pps.

U.S. Environmental Protection Agency [EPA]. 2013. Level III and Level IV Ecoregions of the Continental United States. Corvallis, OR, U.S. EPA, National Health and Environmental Effects Research Laboratory, map scale 1: 3,000,000. Available at http://www.epa.gov/eco-research/level-iii-andiv-ecoregions-continental-united-states. (Accessed 1 March 2017).

White, J. 1994. How the terms savanna, barrens, and oak openings were used in early Illinois. In: J. Fralisch, ed. Proceedings of the North American Conference on Barrens and Savannas. Illinois State University, Normal, IL.

Williams, D.A., L.L. Jackson, and D.D Smith. 2007. Effects of frequent mowing on survival and persistence of forbs seeded into a species-poor grassland. Restoration Ecology 15: 24-33.

Wilsey, B.J. 2008. Productivity and subordinate species response to dominant grass species and seed source during restoration. Restoration Ecology 18: 628-637.

Contributors

Lisa Kluesner Ryan Dermody

Approval

lisa kluesner, 7/01/2019

Acknowledgments

This project could not have been completed without the dedication and commitment from a variety of partners and staff (Table 6). Team members supported the project by serving on the technical team, assisting with the development of state and community phases of the state-and-transition model, providing peer review and technical editing, and conducting quality control and quality assurance reviews.

Organization Name Title Location Drake University: Dr. Tom Rosburg Professor of Ecology and Botany Des Moines, IA

Iowa Department of Natural Resources: Kevin Andersen Private Lands Biologist Fairfield, IA John Pearson Ecologist Des Moines, IA

LANDFIRE (The Nature Conservancy): Randy Swaty Ecologist Evanston, IL

Natural Resources Conservation Service: Rick Bednarek Iowa State Soil Scientist Des Moines, IA Leland Camp Soil Scientist Waverly, IA Stacey Clark Regional Ecological Site Specialist St. Paul, MN Ryan Dermody Soil Survey Leader Waverly, IA Tonie Endres Senior Regional Soil Scientist Indianapolis, IN John Hammerly Soil Data Quality Specialist Indianapolis, IN Lisa Kluesner Ecological Site Specialist Waverly, IA Sean Kluesner Earth Team Volunteer Waverly, IA Jeff Matthias State Grassland Specialist Des Moines, IA Kevin Norwood Soil Survey Regional Director Indianapolis, IN Doug Oelmann Soil Scientist Des Moines, IA James Phillips GIS Specialist Des Moines, IA Jason Steele Area Resource Soil Scientist Fairfield, IA Doug Wallace Ecologist ACES Program Columbia, MO

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):

- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: