

Ecological site R109XY006MO Till Upland Prairie

Accessed: 05/21/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 109X-lowa and Missouri Heavy Till Plain

The lowa and Missouri Heavy Till Plain (area outlined in red on the map) is an area of rolling hills interspersed with interfluve divides and alluvial valleys. Elevation ranges from about 660 feet along the lower reaches of rivers, to about 980 feet on stable interfluve summits in southern Iowa. Relief is about 80 to 160 feet between major streams and adjacent interfluve summits. Most of the till plain drains south to the Missouri River via the Grand and Chariton River systems, but the northeastern portion drains southeast to the Mississippi River. Loess caps the pre-Illinoisan aged till on interfluves, whereas the till is exposed on side slopes. Mississippian aged limestone and Pennsylvanian aged sandstone and shale crop out on lower slopes in some areas.

Classification relationships

Terrestrial Natural Community Type in Missouri (Nelson, 2010):

The reference state for this ecological site is most similar to a Dry-Mesic Loess/Glacial Till Prairie.

National Vegetation Classification System Vegetation Association (NatureServe, 2010):

The reference state for this ecological site is most similar to Andropogon gerardii - Panicum virgatum - Helianthus grosseserratus Herbaceous Vegetation (CEGL002024).

Geographic relationship to the Missouri Ecological Classification System (Nigh & Schroeder, 2002):

This ecological site occurs in many Land Type Associations, primarily within the following Subsections: Chariton River Hills
Grand River Hills
Wyaconda River Dissected Till Plains

Ecological site concept

NOTE: This is a "provisional" Ecological Site Description (ESD) that is under development. It contains basic ecological information that can be used for conservation planning, application and land management. As additional information is collected, analyzed and reviewed, this ESD will be refined and published as "Approved".

Till Upland Prairies are within the green areas on the map. These sites are widespread in the MLRA. Soils are very deep, with dense till subsoils that are mainly clay loam. The reference plant community is prairie dominated by Indiangrass, big bluestem, little bluestem and sideoats grama, and a wide variety of prairie wildflowers.

Associated sites

R109XY002MO	Loess Upland Prairie Loess Upland Prairies are upslope, on summits and shoulders.	
R109XY008MO	Till Backslope Savanna Till Backslope Savannas are downslope in places, on steep lower backslopes	
R109XY029MO	Wet Upland Drainageway Prairie Wet Upland Drainageway Prairies are downslope.	

Similar sites

R109XY002MO	Loess Upland Prairie
	Loess Upland Prairie sites are in similar landscape positions, but have more loess in the soil. Species composition is similar in the reference state communities of these two ecological sites, but the Till Upland
	Prairie site is less productive.

Table 1. Dominant plant species

Tree	(1) Quercus macrocarpa
Shrub	(1) Amorpha canescens
Herbaceous	(1) Schizachyrium scoparium(2) Andropogon gerardii

Physiographic features

This site is on upland summits, shoulders and backslopes with slopes of 2 to 14 percent. The site generates runoff to adjacent, downslope ecological sites. This site does not flood.

The following figure (adapted from Minor & Davis, 1983) shows the typical landscape position of this ecological site, and landscape relationships among the major ecological sites of the uplands. The site is within the area labeled "2", and is typically downslope from the Loess Upland Prairie ecological site on summits.

Figure 2. Landscape relationships for this ecological site

Table 2. Representative physiographic features

Landforms	(1) Ridge(2) Interfluve(3) Hill		
Flooding frequency	None		
Ponding frequency	None		
Slope	2–14%		
Water table depth	15–122 cm		
Aspect	Aspect is not a significant factor		

Climatic features

The lowa and Missouri Heavy Till Plain MLRA has a continental type of climate marked by strong seasonality. In winter, dry-cold air masses, unchallenged by any topographic barriers, periodically swing south from the northern plains and Canada. If they invade reasonably humid air, snowfall and rainfall result. In summer, moist, warm air masses, equally unchallenged by topographic barriers, swing north from the Gulf of Mexico and can produce abundant amounts of rain, either by fronts or by convectional processes. In some summers, high pressure stagnates over the region, creating extended droughty periods. Spring and fall are transitional seasons when abrupt changes in temperature and precipitation may occur due to successive, fast-moving fronts separating contrasting air masses.

This MLRA experiences small regional differences in climates that grade inconspicuously into each other. The basic gradient for most climatic characteristics is along a line from north to south. Both mean annual temperature and precipitation exhibit fairly minor gradients along this line.

Mean January minimum temperature follows the north-to-south gradient. However, mean July maximum temperature shows hardly any geographic variation in the region. Mean July maximum temperatures have a range of only two to three degrees across the region.

Mean annual precipitation varies along the same gradient as temperature – lower annual precipitation in the north, higher in the south. Seasonality in precipitation is very pronounced due to strong continental influences. June precipitation, for example, averages four to five times greater than January precipitation.

During years when precipitation comes in a fairly normal manner, moisture is stored in the top layers of the soil during the winter and early spring, when evaporation and transpiration are low. During the summer months the loss of water by evaporation and transpiration is high, and if rainfall fails to occur at frequent intervals, drought will result. Drought directly influences ecological communities by limiting water supplies, especially at times of high temperatures and high evaporation rates. Drought indirectly affects ecological communities by increasing plant and animal susceptibility to the probability and severity of fire. Frequent fires encourage the development of grass/forb dominated communities and understories.

Superimposed upon the basic MLRA climatic patterns are local topographic influences that create topoclimatic, or microclimatic variations. For example, air drainage at nighttime may produce temperatures several degrees lower in valley bottoms than on side slopes. At critical times during the year, this phenomenon may produce later spring or earlier fall freezes in valley bottoms. Slope orientation is an important topographic influence on climate. Summits and south-and-west-facing slopes are regularly warmer and drier, supporting more grass dominated communities than adjacent north- and-east-facing slopes that are cooler and moister that support more woody dominated communities. Finally, the cooler microclimate within a canopied forest is measurably different from the climate of a more open and warmer grassland or savanna area.

Source: University of Missouri Climate Center - http://climate.missouri.edu/climate.php; Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin, United States Department of Agriculture Handbook 296 - http://soils.usda.gov/survey/geography/mlra/

Table 3. Representative climatic features

Frost-free period (average)	163 days		
Freeze-free period (average)	181 days		
Precipitation total (average)	1,016 mm		

Climate stations used

- (1) HAMILTON 2W [USC00233568], Hamilton, MO
- (2) MEMPHIS [USC00235492], Memphis, MO
- (3) MT AYR [USC00135769], Mount Ayr, IA
- (4) RATHBUN DAM [USC00136910], Centerville, IA
- (5) BETHANY [USC00230608], Bethany, MO

Influencing water features

This ecological site is not influenced by wetland or riparian water features. However, seeps may occur in headslope positions, particularly in the spring, and following heavy rainfall events. These seeps are source areas for first-order ephemeral streams, typically within Upland Drainageway ecological sites downslope. Where present, these headslope seeps are in the Slope wetlands class of the Hydrogeomorphic (HGM) classification system (Brinson, 1993).

Soil features

These soils have no rooting restrictions. The soils were formed under prairie vegetation, and have dark, organic-rich surface horizons. Parent material is till. They have loam surface layers, with dense subsoils that are mainly clay loam and silty clay. Some soils are affected by seasonal wetness in spring months from a water table perched on the clayey subsoil. Soil series associated with this site include Adair, Clarinda, Lamoni, Malvern, and Shelby.

Table 4. Representative soil features

Surface texture	(1) Loam (2) Clay loam		
Family particle size	(1) Clayey		
Drainage class	Poorly drained to moderately well drained		
Permeability class	Very slow to slow		
Surface fragment cover <=3"	0–2%		
Surface fragment cover >3"	0%		
Available water capacity (0-101.6cm)	12.7–17.78 cm		

Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	4.5–7.3
Subsurface fragment volume <=3" (Depth not specified)	0–10%
Subsurface fragment volume >3" (Depth not specified)	0%

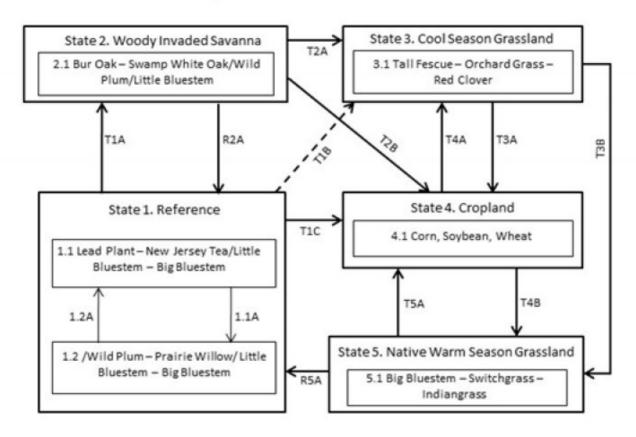
Ecological dynamics

Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.

The reference plant community is characterized as a tallgrass prairie unit dominated by little and big bluestem, Indian grass, sideoats grama, and a wide variety of prairie wildflowers. On lower slopes and draws where water periodically accumulates, more mesic prairie species such as switch grass, eastern gamagrass, prairie cordgrass, Culver's root, Michigan lily, and bunchflower are added to the diverse mix of prairie species. Bur oak, swamp white oak, post oak, elm, and wild plum occurred occasionally as scattered individuals across the prairie landscape.

While not as typically dry and fire prone as the Claypan and Loess Prairies, this ecological site still burned every 1 to 3 years. Fire removed dead plant litter and provided room for a lush growth of prairie vegetation. Fire also kept woody species at bay.

Grazing by native large herbivores also impacted these sites. Their activities altered the composition, fuel loads and structure of the vegetation, creating a diversity of structure and composition. The partially wooded draws would have burned less intensely and less frequently. During fire free intervals woody species would have increased in abundance and spread out onto the prairie.


These sites are moderately productive. Today, Till Upland Prairies are nearly extirpated from the region as the former prairies and savannas have been converted to intensive agriculture. A few known remnants exist but are degraded by fire suppression and grazing by domestic livestock.

While re-establishing prairie and savanna on converted agriculture sites is beneficial to wildlife, restoration to the reference state from agricultural land is a long term proposition with uncertain outcomes.

A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.

State and transition model

Till Upland Prairie, R109XY006MO

Code	Code Event/Activity/Process			
T1A Fire suppression > 20 years; woody invasion				
T1B	Tillage; vegetative seeding; grassland management			
T1C, T3A, T5A	Tillage; conservation cropping system			
T2A	Woody removal; tillage; vegetative seeding; grassland management			
T2B	Woody removal; tillage; conservation cropping system			
T4A	Vegetative seeding; grassland management			
T3B, T4B	Vegetative seeding; prescribed fire; grassland management			
1.1A	Fire-free interval 10+ years			
1.2A Fire interval 1-3 years				
R2A	Woody removal; prescribed fire 1-3 years			
R5A	Vegetative seeding; prescribed fire 1-3 years			

Figure 7. State & Transition Model for this ecological site.

Reference

This State is native tall grass prairie dominated by little bluestem, big bluestem and a wide variety of prairie wildflowers. This State occurs on level to gently sloping soils. In some cases, bur oak, swamp white oak, post oak, elm, American hazelnut, prairie willow and wild plum occurred in small groves or as scattered individuals across the prairie landscape. Two phases can occur that will transition back and forth depending on fire frequencies. Longer fire free intervals will allow woody species to increase such as prairie willow, dogwoods and wild plum. When fire intervals shorten these woody species will decrease. This State is rare. Most sites have been converted to cool season grassland and intensive agriculture cropland.

Community 1.1 Lead Plant-New Jersey Tea/Little Bluestem-Big Bluestem

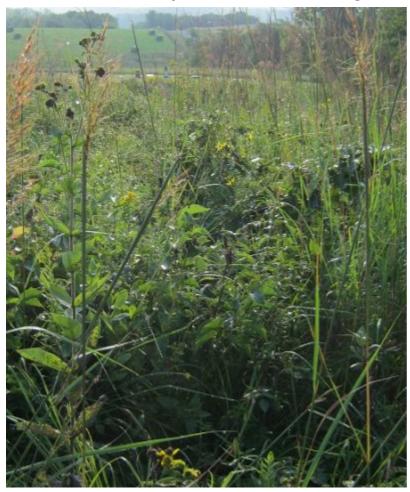


Figure 8. Catholic church cemetery, Harrison County, Missouri

This phase has scattered lead plant, New Jersey tea, and prairie willow with grasses such as big bluestem, Indian grass and dropseeds dominating the ground layer. Numerous forbs such as Missouri coneflower, prairie clovers, bunchflower, rosinweed, and compass plant are also present and locally abundant. Fire frequencies of 1 to 3 years helped maintain the community structure and composition.

Forest overstory. The Forest Overstory Species list is based commonly occurring species listed in Nelson (2010).

Forest understory. The Forest Understory list is based on reconnaissance-level plots, as well as commonly occurring species listed in Nelson (2010). Species identified from plot data include cover percentages. Species not found in plots, but listed in Nelson, do not include cover percentages. All species are in the 3-6 foot height class.

Community 1.2 /Wild Plum-Prairie Willow/Llittle Bluestem-Big Bluestem

This phase is similar to community phase 1.1 but numerous shrubs are increasing due to longer periods of fire suppression. Some displacement of grasses and forbs may be occurring due to shading and competition from the increased densities of shrubs.

State 2

Woody Invaded Savanna

Degraded reference states that have experienced fire suppression for 20 or more years will transition to this state. With fire suppression, woody species such as bur oak and eastern redcedar will begin to increase transitioning this state from a prairie to a Woody Invaded Savanna. Native ground cover will also decrease and invasive species such as tall fescue may begin to dominate. Transition from this state to cool season grasslands (State 3) or intensive cropland (State 4) was very common.

Community 2.1

Bur Oak-Swamp White Oak/Wild Plum/Little Bluestem

State 3

Cool Season Grassland

Conversion of other states to non-native cool season species such as tall fescue, orchard grass and red clover has been common in this area. Occasionally, these pastures will have scattered bur oaks. Long term uncontrolled grazing and a lack of grassland management can cause significant soil erosion and compaction and increases in less productive species such as Kentucky bluegrass and weedy forbs such as ironweed. A return to the Reference State may be impossible, requiring a very long term series of management options.

Community 3.1

Tall Fescue-Orchard Grass-Red Clover

State 4

Cropland

This is the dominant State that exists currently with intensive cropping of corn, soybeans, and wheat occurring. Some conversion to cool season hayland occurs for a limited period of time before transitioning back to cropland. Limited acres are sometimes converted to native warm season grassland.

Community 4.1

Corn, Soybean, Wheat

State 5

Native Warm Season Grassland

Conversion from the Cool Season Grassland (State 3) or the Cropland (State 4) to this State is increasing due to renewed interest in warm season grasses as a supplement to cool season grazing systems or as a native restoration activity.

Community 5.1

Big Bluestem-Switchgrass-Indiangrass

Figure 9. TNC Dunn Ranch, Adair County, Missouri

Additional community tables

Table 5. Community 1.1 forest overstory composition

Common Name	Symbol	Scientific Name	Nativity	Height (M)	Canopy Cover (%)	Diameter (Cm)	Basal Area (Square M/Hectare)
Tree	-	-	-	-	_		
swamp white oak	QUBI	Quercus bicolor	Native	-	0–5	_	-
bur oak	QUMA2	Quercus macrocarpa	Native	_	0–5	_	_
post oak	QUST	Quercus stellata	Native	_	0–5	_	_

Table 6. Community 1.1 forest understory composition

Common Name	Symbol	Scientific Name	Nativity	Height (M)	Canopy Cover (%)
Grass/grass-like (Gramino	oids)	•		<u> </u>	
big bluestem	ANGE	Andropogon gerardii	Native	_	25–50
Indiangrass	SONU2	Sorghastrum nutans	Native	_	25–50
prairie dropseed	SPHE	Sporobolus heterolepis	Native	_	2–5
Canada wildrye	ELCA4	Elymus canadensis	Native	_	0.1–1
porcupinegrass	HESP11	Hesperostipa spartea	Native	-	_
switchgrass	PAVI2	Panicum virgatum	Native	-	_
little bluestem	SCSC	Schizachyrium scoparium	Native	-	_
eastern gamagrass	TRDA3	Tripsacum dactyloides	Native	-	-
sideoats grama	BOCU	Bouteloua curtipendula	Native	-	_
Forb/Herb		•			
wholeleaf rosinweed	SIIN2	Silphium integrifolium	Native	-	5–10
shrubby lespedeza	LEFR5	Lespedeza frutescens	Native	-	2–5
Canada goldenrod	SOCA6	Solidago canadensis	Native	-	2–5
tall tickseed	COTR4	Coreopsis tripteris	Native	-	2–5
hairy sunflower	HEHI2	Helianthus hirsutus	Native	-	1–2
white wild indigo	BAAL	Baptisia alba	Native	_	1–2
Missouri goldenrod	SOMI2	Solidago missouriensis	Native	-	1–2
American hogpeanut	AMBR2	Amphicarpaea bracteata	Native	_	0.1–1
groundnut	APAM	Apios americana	Native	_	0.1–1

groovestem Indian plantain	ARPL4	Arnoglossum plantagineum	Native	e – 0.1–	
downy phlox	PHPI	Phlox pilosa	Native	_	0.1–1
Virginia groundcherry	PHVI5	Physalis virginiana	Native –		0.1–1
pinnate prairie coneflower	RAPI	Ratibida pinnata Native –		0.1–1	
fringeleaf wild petunia	RUHU	Ruellia humilis	Native	_	0.1–1
Maximilian sunflower	HEMA2	Helianthus maximiliani	Native	_	0.1–1
prairie milkweed	ASSU3	Asclepias sullivantii	Native	_	_
butterfly milkweed	ASTU	Asclepias tuberosa	Native	_	_
wild bergamot	MOFI	Monarda fistulosa	Native	_	_
wild quinine	PAIN3	Parthenium integrifolium	Native	_	_
purple milkwort	POSA3	Polygala sanguinea	Native	_	_
compassplant	SILA3	Silphium laciniatum	Native	_	_
Culver's root	VEVI4	Veronicastrum virginicum	Native	_	_
Virginia bunchflower	VEVI5	Veratrum virginicum	ginicum Native –		_
purple prairie clover	DAPU5	Dalea purpurea	Native	_	_
eastern purple coneflower	ECPU	Echinacea purpurea	Native	_	_
button eryngo	ERYU	Eryngium yuccifolium	Native	ı	_
ashy sunflower	HEMO2	Helianthus mollis	Native	_	_
hoary puccoon	LICA12	Lithospermum canescens	Native	ı	_
prairie blazing star	LIPY	Liatris pycnostachya	Native	I	
Shrub/Subshrub	-		•		
leadplant	AMCA6	Amorpha canescens	Native	I	2–5
smooth sumac	RHGL	Rhus glabra	Native	_	1–2
northern dewberry	RUFL	Rubus flagellaris	Native	_	1–2
willow	SALIX	Salix	Native	_	0.1–1
coralberry	SYOR	Symphoricarpos orbiculatus	Native	_	0.1–1
New Jersey tea	CEAM	Ceanothus americanus	Native	_	_
American plum	PRAM	Prunus americana	Native		_
Carolina rose	ROCA4	Rosa carolina	Native	-	_
prairie willow	SAHU2	Salix humilis	Native	_	_

Animal community

Wildlife

Game species that utilize this ecological site include:

Northern Bobwhite will utilize this ecological site for food (seeds, insects) and cover needs (escape, nesting and roosting cover).

Cottontail rabbits will utilize this ecological site for food (seeds, soft mast) and cover needs. (Pitts and McGuire. 2000)

Turkey will utilize this ecological site for food (seeds, green browse, soft mast, insects) and nesting and brood-rearing cover. Turkey poults feed heavily on insects provided by this site type.

White-tailed Deer will utilize this ecological site for browse (plant leaves in the growing season, seeds and soft mast in the fall/winter). This site type also can provide escape cover.

Bird species associated with this ecological site's reference state condition (Fitzgerald and Pashley. 2000b; Jacobs

2001):

Breeding birds as related to vegetation structure (related to time since fire, grazing, haying, and mowing):

Vegetation Height Short (< 0.5 meter, low litter levels, bare ground visible): Grasshopper Sparrow, Horned Lark, Upland Sandpiper, Greater Prairie Chicken, Northern Bobwhite

Mid-Vegetation Height (0.5 – 1 meter, moderate litter levels, some bare ground visible): Eastern Meadowlark, Dickcissel, Field Sparrow, Upland Sandpiper, Greater Prairie Chicken, Northern Bobwhite, Eastern Kingbird, Bobolink, Lark Sparrow

Tall Vegetation Height (> 1 meter, moderate-high litter levels, little bare ground visible): Henslow's Sparrow, Dickcissel, Greater Prairie Chicken, Field Sparrow, Northern Bobwhite, Sedge Wren, Northern Harrier

Brushy – Mix of grasses, forbs, native shrubs (e.g., Rhus copallina, Prunus americana, Rubus spp., Rosa carolina) and small trees (e.g., Cornus racemosa): Bell's Vireo, Yellow-Breasted Chat, Loggerhead Shrike, Brown Thrasher, Common Yellowthroat

Winter Resident: Short-Eared Owl, Le Conte's Sparrow

Amphibian and reptile species associated with this ecological site's reference state condition: prairies with or nearby to fishless ponds/pools (may be ephemeral) may have Eastern Tiger Salamander (Ambystoma tigrinum tigrinum) and Western Chorus Frog (Pseudacris triseriata triseriata); prairies with crawfish burrows may have Northern Crawfish Frog (Rana areolata circulosa); other species include Northern Prairie Skink (Eumeces septentrionalis septentrionalis), Ornate Box Turtle (Terrapene ornata ornata), Western Slender Glass Lizard (Ophisaurus attenuatus attenuatus), Eastern Yellow-bellied Racer (Coluber constrictor flaviventris), Prairie Ring-necked Snake (Diadophis punctatus arnyi), and Bullsnake (Pituophis catenifer sayi). (Johnson 2000)

Small mammals associated with this ecological site's reference state condition: Least Shrew (Cryptotis parva), Franklin's Ground Squirrel (Spermophilus franklinii), Plains Pocket Gopher (Geomys bursarius), Prairie Vole (Microtus ochrogaster), Southern Bog Lemming (Synaptomys cooperi), Meadow Jumping Mouse (Zapus hudsonius), Thirteen-lined Ground Squirrel (Spermophilus tridecemlineatus) and Badger (Taxidea taxus). (Schwartz and others 2001)

Invertebrates:

Many native insect species are likely associated with this ecological site, especially native bees, ants, beetles, butterflies and moths, and crickets, grasshoppers and katydids. However information on these groups is often lacking enough resolution to assign them to individual ecological sites.

Insect species known to be associated with this ecological site's reference state condition: Regal Fritillary butterfly (Speyeria idalia) whose larvae feed primarily on native prairie violets (Viola pedata, V. pedatifida, and V. sagittata); Mottled Dusky Wing butterfly (Erynnis martialis), Golden Byssus butterfly (Problema byssus kumskaka), Delaware Skipper butterfly (Atryone logan logan), and Crossline Skipper butterfly (Polites origenes). The larvae of the moth Eucosma bipunctella bore into compass plant (Silphium laciniatum) roots and feed and the larvae of the moth Eucosma giganteana bore into a number of Silphium species roots and feed. Native bees, important pollinators, that may be associated with this ecological site's reference condition include: Colletes brevicornis, Andrena beameri, A. helianthiformis, Protandrena rudbeckiae, Halictus parallelus, Lasioglossum albipennis, L. coreopsis, L. disparilis, L. nymphaereum, Ashmeadiella bucconis, Megachile addenda, Anthidium psoraleae, Eucera hamata, Melissodes coloradensis, M. coreopsis, and M. vernoniae. The Short-winged Katydid (Amblycorypha parvipennis), Green Grasshopper (Hesperotettix speciosus) and Two-voiced Conehead katydid (Neoconcephalus bivocatus) are possible orthopteran associates of this ecological site. (Heitzman and Heitzman 1996)

Other invertebrate associates include the Grassland Crayfish (Procambarus gracilis).

Other information

Forestry

Management: This ecological site is not recommended for traditional timber management activity. Historically this

site was dominated by a ground cover of native prairie grasses and forbs. Some scattered open grown trees may have also been present. May be suitable for non-traditional forestry uses such as windbreaks, environmental plantings, alley cropping (a method of planting, in which rows of trees or shrubs are interspersed with rows of crops) or woody bio-fuels.

Inventory data references

Tier II Reconnaissance plots: Potential Reference:

Plot CACHPR01 - Lamoni soil Old Catholic Church Cemetery, Harrison County, MO Latitude: 40.552336

Alternate state – (not included in data summaries)

Plot DURANC02 – Adair soil - Native Warm Season Grassland Dunn Ranch TNC, Adair County, MO Latitude: 40.471984 Longitude: - 94.115252

Other references

Longitude: -93.839055

Brinson, M.M. 1993. A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4, U.S. Army Corps of Engineers, Engineer Waterways Experiment Station, Vicksburg, MS.

Fitzgerald, J.A. and D.N. Pashley. 2000b. Partners in Flight bird conservation plan for the Dissected Till Plains. American Bird Conservancy.

Heitzman, J.R. and J.E. Heitzman. 1996. Butterflies and moths of Missouri. 2nd ed. Missouri Department of Conservation, Jefferson City.

Jacobs, B. 2001. Birds in Missouri. Missouri Department of Conservation, Jefferson City.

Johnson, T.R. 2000. The amphibians and reptiles of Missouri. 2nd ed. Missouri Department of Conservation, Jefferson City.

Minor, Paul E., & Keith O. Davis. 1983. Soil Survey of Clinton County, Missouri. U.S. Dept. of Agric. Soil Conservation Service.

NatureServe, 2010. Vegetation Associations of Missouri (revised). NatureServe, St. Paul, Minnesota.

Nelson, Paul W. 2010. The Terrestrial Natural Communities of Missouri. Missouri Department of Conservation, Jefferson City, Missouri.

Nigh, Timothy A., & Walter A. Schroeder. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation, Jefferson City, Missouri.

Pitts, D.E. and W.D. McGuire. 2000. Wildlife management for Missouri landowners. 3rd ed. Missouri Department of Conservation, Jefferson City.

Schwartz, C.W., E.R. Schwartz and J.J. Conley. 2001. The wild mammals of Missouri. University of Missouri Press, Columbia and Missouri Department of Conservation, Jefferson City.

Contributors

Doug Wallace Fred Young

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)
Contact for lead author
Date
Approved by
Approval date
Composition (Indicators 10 and 12) based on Annual Production
Indicators 1. Number and extent of rills:
2. Presence of water flow patterns:
3. Number and height of erosional pedestals or terracettes:
4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
5. Number of gullies and erosion associated with gullies:
6. Extent of wind scoured, blowouts and/or depositional areas:
7. Amount of litter movement (describe size and distance expected to travel):
8. Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):

9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):

10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
17.	Perennial plant reproductive capability: