

Ecological site F115XB001MO Deep Loess Upland Woodland

Accessed: 05/18/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 115X-Central Mississippi Valley Wooded Slopes

The Central Mississippi Valley Wooded Slopes, Western Part (area outlined in red on the map) consists mainly of the deeply dissected, loess-covered hills bordering the Missouri and Mississippi Rivers as well as the floodplains and terraces of these rivers. It wraps around the northeast corner of the Ozark Uplift, and constitutes the southern border of the Pre-Illinoisan-aged till plain. Elevation ranges from about 320 feet along the Mississippi River near Cape Girardeau in the south to about 1,020 feet on the highest ridges near Hillsboro, MO in the east. Local relief varies from 10 to 20 feet in the major river floodplains, to 50 to 100 feet in the dissected uplands, with bluffs of 200 to 350 feet along the Mississippi and Missouri Rivers. Underlying bedrock is mainly Ordovician-aged dolomite and sandstone, with Mississippian-aged limestone north of the Missouri River.

Classification relationships

Terrestrial Natural Community Type in Missouri (Nelson, 2010):

The reference state for this ecological site is most similar to a Dry-Mesic Loess/Glacial Till Woodland.

Missouri Department of Conservation Forest and Woodland Communities (MDC, 2006):

The reference state for this ecological site is most similar to a White Oak Loess/Glacial Till Woodland.

National Vegetation Classification System Vegetation Association (NatureServe, 2010):

The reference state for this ecological site is most similar to a Quercus alba - (Carya ovata) / Carex pensylvanica Glaciated Woodland (CEGL002134).

Geographic relationship to the Missouri Ecological Classification System (Nigh & Schroeder, 2002):

This ecological site occurs in many Land Type Associations of the following Subsections:

Inner Ozark Border

Outer Ozark Border

Mississippi River Hills

Ecological site concept

NOTE: This is a "provisional" Ecological Site Description (ESD) that is under development. It contains basic ecological information that can be used for conservation planning, application and land management. After additional information is collected, analyzed and reviewed, this ESD will be refined and published as "Approved".

Deep Loess Upland Woodlands (green areas on the map) are on uplands adjacent to the Missouri and Mississippi

River Floodplains. Soils are very deep, with no rooting restrictions. The reference plant community is woodland with an overstory dominated by white oak and black oak, with minor amounts of post oak, and a ground flora of native grasses and forbs.

Associated sites

F115XB003MO	Deep Loess Protected Backslope Forest Deep Loess Protected Backslope Forests are downslope on north and east facing slopes.
F115XB008MO	Loamy Limestone/Dolomite Protected Backslope Forest Loamy Limestone/Dolomite Protected Backslope Forests are on the lower backslopes underlain with limestone and/or dolomite bedrock at 20 to 40 inches.
F115XB043MO	Deep Loess Exposed Backslope Woodland Deep Loess Exposed Backslope Woodlands are downslope on south and west facing slopes
F115XB045MO	Loamy Limestone/Dolomite Exposed Backslope Woodland Loamy Limestone/Dolomite Exposed Backslope Woodlands are on the lower backslopes underlain with limestone and/or dolomite bedrock at 20 to 40 inches.

Similar sites

F115XB004M0	Loess Upland Woodland
	Loess Upland Woodlands have similar structure and composition but are not as productive.

Table 1. Dominant plant species

Tree	(1) Quercus alba (2) Quercus velutina
Shrub	(1) Rhus aromatica
Herbaceous	(1) Elymus virginicus (2) Solidago ulmifolia

Physiographic features

This site is on upland summit crests, shoulders and upper backslopes, with slopes of 1 to 15 percent. The site generates runoff to adjacent, downslope ecological sites. This site does not flood.

The accompanying figure (adapted from Young et al., 2003) shows the typical landscape position of this ecological site, and landscape relationships with other ecological sites in the uplands adjacent to the Missouri River. The site is within the area labeled "1", on convex hillslope crests and shoulders. Deep Loess Backslope sites are directly downslope, and are included within the area labeled "1".

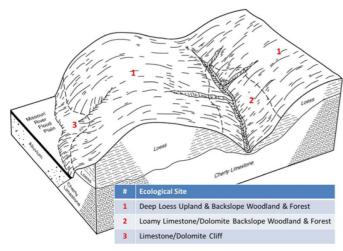


Figure 2. Landscape relationships for this ecological site.

Table 2. Representative physiographic features

Landforms	(1) Ridge (2) Interfluve (3) Hill
Flooding frequency	None
Ponding frequency	None
Slope	1–15%
Water table depth	61–183 cm
Aspect	Aspect is not a significant factor

Climatic features

The Central Mississippi Valley Wooded Slopes, Western Part has a continental type of climate marked by strong seasonality. In winter, dry-cold air masses, unchallenged by any topographic barriers, periodically swing south from the northern plains and Canada. If they invade reasonably humid air, snowfall and rainfall result. In summer, moist, warm air masses, equally unchallenged by topographic barriers, swing north from the Gulf of Mexico and can produce abundant amounts of rain, either by fronts or by convectional processes. In some summers, high pressure stagnates over the region, creating extended droughty periods. Spring and fall are transitional seasons when abrupt changes in temperature and precipitation may occur due to successive, fast-moving fronts separating contrasting air masses.

The Central Mississippi Valley Wooded Slopes, Western Part experiences regional differences in climates, but these differences do not have obvious geographic boundaries. Regional climates grade inconspicuously into each other. The basic gradient for most climatic characteristics is along a line diagonally crossing the MLRA from northwest to southeast. Both mean annual temperature and precipitation exhibit gradients along this line. The average annual precipitation in most of this area is 38 to 48 inches. The average annual temperature is 53 to 57 degrees F. Mean January minimum temperature follows the northwest-to-southeast gradient. However, mean July maximum temperature shows hardly any geographic variation in the MLRA. Mean July maximum temperatures have a range of only two or three degrees across the area.

Mean annual precipitation varies along the same gradient as temperature. Seasonal climatic variations are more complex. Seasonality in precipitation is very pronounced due to strong continental influences. June precipitation, for example, averages three to four times greater than January precipitation. Most of the rainfall occurs as high-intensity, convective thunderstorms in summer. Snowfall is common in winter.

During years when precipitation comes in a fairly normal manner, moisture is stored in the top layers of the soil during the winter and early spring, when evaporation and transpiration are low. During the summer months the loss of water by evaporation and transpiration is high, and if rainfall fails to occur at frequent intervals, drought will result. Drought directly affects plant and animal life by limiting water supplies, especially at times of high temperatures and high evaporation rates.

Superimposed upon the basic MLRA climatic patterns are local topographic influences that create topoclimatic, or microclimatic variations. In regions of appreciable relief, for example, air drainage at nighttime may produce temperatures several degrees lower in valley bottoms than on side slopes. At critical times during the year, this phenomenon may produce later spring or earlier fall freezes in valley bottoms. Higher daytime temperatures of bare rock surfaces and higher reflectivity of these unvegetated surfaces may create distinctive environmental niches such as glades and cliffs. Slope orientation is an important topographic influence on climate. Summits and south-and-west-facing slopes are regularly warmer and drier than adjacent north- and-east-facing slopes. Finally, the climate within a canopied forest is measurably different from the climate of a more open grassland or savanna areas.

Source:

University of Missouri Climate Center - http://climate.missouri.edu/climate.php; accessed June 2012

Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific

Table 3. Representative climatic features

Frost-free period (average)	180 days
Freeze-free period (average)	202 days
Precipitation total (average)	1,143 mm

Climate stations used

- (1) KASKASKIA RVR NAV LOCK [USC00114629], Ellis Grove, IL
- (2) JEFFERSON CITY WTP [USC00234271], Jefferson City, MO
- (3) NEW FRANKLIN 1W [USC00236012], Franklin, MO
- (4) JACKSON [USC00234226], Jackson, MO
- (5) ST LOUIS LAMBERT INTL AP [USW00013994], Saint Louis, MO

Influencing water features

The water features of this upland ecological site include evapotranspiration, surface runoff, and drainage. Each water balance component fluctuates to varying extents from year-to-year. Evapotranspiration remains the most constant. Precipitation and drainage are highly variable between years. Seasonal variability differs for each water component. Precipitation generally occurs as single day events. Evapotranspiration is lowest in the winter and peaks in the summer. Water stored as ice and snow decreases drainage and surface runoff rates throughout the winter and increases these fluxes in the spring. The surface runoff pulse is greatly influenced by extreme events. Conversion to cropland or other high intensities land uses tends to increase runoff, but also decreases evapotranspiration. Depending on the situation, this might increase groundwater discharge, and decrease baseflow in receiving streams (Vano 2005).

Soil features

These soils have no major rooting restriction. The soils were formed under woodland vegetation, and have thin, light-colored surface horizons. Parent material is loess. The soils have silt loam surface horizons. Subsoils are silt loam to silty clay loam. Some soils are slightly affected by seasonal wetness. Soil series associated with this site include Drury, Harvestor, Iva, Menfro, Navlys, Stookey, Weller, and Winfield.

The accompanying picture of the Menfro series shows a thin, light-colored surface horizon to about 7 inches overlying the brown silt loam to silty clay loam subsoil. The excellent rooting characteristics of Menfro and other soils allow for productive, diverse reference vegetation communities on this ecological site. Scale is in feet.

Figure 7. Menfro series

Table 4. Representative soil features

Surface texture	(1) Silt loam
Family particle size	(1) Loamy
Drainage class	Somewhat poorly drained to well drained
Permeability class	Very slow to slow
Soil depth	183 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	15.24–20.32 cm
Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	4.5–7.3
Subsurface fragment volume <=3" (Depth not specified)	0%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.

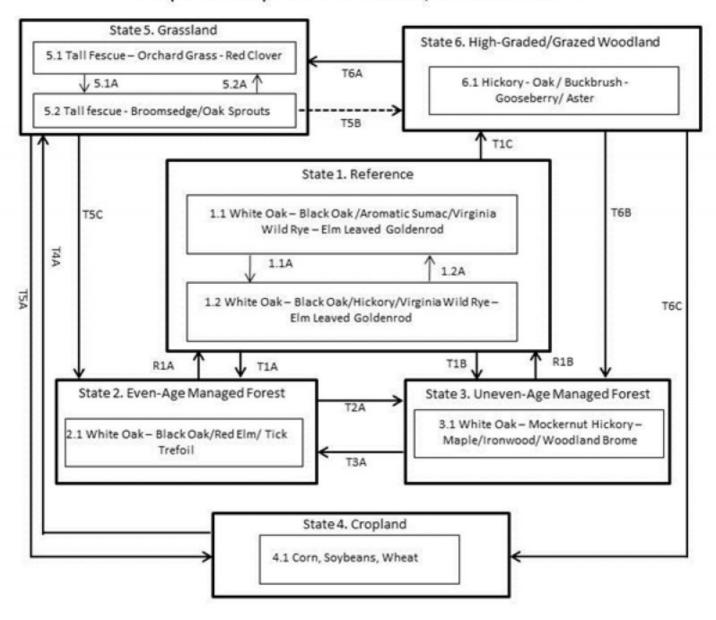
The reference plant community is well developed woodland dominated by an overstory of white oak, along with black oak and an occasional post oak. The canopy is tall (70 to 90 feet) but less dense (65 to 85 percent canopy closure) and less structurally diverse than nearby protected slopes. Increased light from a more open canopy causes a diversity of woodland ground flora species to flourish. Woodlands are distinguished from forest, by their relatively open understory, and the presence of sun-loving ground flora species. Characteristic plants in the ground flora can be used to gauge the restoration potential of a stand along with remnant open-grown old-age trees, and tree height growth.

Despite being somewhat distant from prairies, fire still played a role in the maintenance of these systems. It is likely that these ecological sites burned at least once every 10 to 15 years. These periodic fires kept woodlands open, removed the litter, and stimulated the growth and flowering of the grasses and forbs. During fire free intervals, woody understory species increased and the herbaceous understory diminished. The return of fire would open the woodlands up again and stimulate the abundant ground flora.

Deep Loess Upland Woodlands were also subjected to occasional disturbances from wind and ice, as well as grazing by native large herbivores, such as bison, elk, and deer. Wind and ice would have periodically opened the canopy up by knocking over trees or breaking substantial branches off canopy trees. Grazing by native herbivores would have effectively kept understory conditions more open, creating conditions more favorable to oak reproduction and woodland ground flora species.

Today, many of these ecological sites have been cleared and converted to pasture and cropland or have

undergone repeated timber harvest and domestic grazing. Most existing forested ecological sites have a younger (50 to 80 years) canopy layer whose species composition and quality has been altered by timber harvesting practices. In the long term absence of fire, woody species, especially hickory, encroach into these woodlands. Once established, these woody plants can quickly fill the existing understory increasing shade levels with a greatly diminished ground flora. Removal of the younger understory and the application of prescribed fire have proven to be effective restoration means.


Uncontrolled domestic grazing has also impacted these communities, further diminishing the diversity of native plants and introducing species that are tolerant of grazing, such as buckbrush, gooseberry, and Virginia creeper. Grazed sites also have a more open understory. In addition, soil compaction and soil erosion from grazing can be a problem and lower site productivity.

These ecological sites are productive. Oak regeneration is typically problematic. Sugar maple, red elm, and hickories are often dominant competitors in the understory. Maintenance of the oak component will require disturbances that will encourage more sun adapted species and reduce shading effects. Single tree selection timber harvests are common in this region and often results in removal of the most productive trees (high grading) in the stand leading to poorer quality timber and a shift in species composition away from more valuable oak species. Better planned single tree selection or the creation of group openings can help regenerate and maintain more desirable oak species and increase vigor on the residual trees. Clearcutting also occurs and results in dense, evenaged stands dominated by oak. This may be most beneficial for existing stands whose composition has been highly altered by past management practices. However, without some thinning of the dense stands and the application of prescribed fire, the ground flora diversity can be shaded out and diversity of the stand may suffer.

A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases

State and transition model

Deep Loess Upland Woodland, F115BY001MO

Code	Event/Activity/Process
T1A	Fire suppression; even-aged management
T18	Fire suppression; uneven-age management
T1C	Poorly planned harvest; uncontrolled grazing
T2A	Uneven-age management; extended rotations
T3A	Even-age management; thinning
T4A	Pasture planting; prescribed grazing
T5A	Tillage; crop rotation
T5B	Light to no grazing; woody growth; harvesting
T5C	No grazing; woody growth; tree planting
T6A	Clearing; pasture planting; prescribed grazing
T6B	Uneven-age management; tree planting
T6C	Clearing; tillage; crop rotation
R1A, R1B	Prescribed fire; extended rotations

Code	Event/Activity/Process
1.1A	No disturbance >10 years
1.2A	Disturbance (fire, wind, ice) < 10 years
5.1A	Over grazing; no fertilization
5.2A	Brush management; prescribed grazing

Figure 8. State and transition diagram for this ecological s

Reference

The historical reference state for this ecological site was old growth oak woodland. The woodland was dominated by white oak and black oak. Maximum tree age was likely 150 to 300 years. Periodic disturbances from fire, wind or ice as well as grazing by native large herbivores maintained the woodland structure and diverse ground flora species. Long disturbance-free periods allowed an increase in both the density of trees and the abundance of shade tolerant species. Two community phases are recognized in the reference state, with shifts between phases based on disturbance frequency. Reference states are very rare today. Fire suppression has resulted in increased canopy density, which has affected the abundance and diversity of ground flora. Most, if not all, reference states are currently altered because of fire suppression, timber harvesting, domestic grazing or clearing and conversion to grassland or cropland.

Community 1.1

White oak - Black oak/Aromatic sumac/Virginia wild rye - Elm leaved goldenrod

This phase has an overstory that is dominated by white oak and black oak with hickory also present. This woodland community has a two-tiered structure with an open understory and a dense, diverse herbaceous ground flora. Periodic disturbances including fire, ice and wind create canopy gaps, allowing white oak and black oak to successfully reproduce and remain in the canopy.

Forest overstory. The Overstory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).

Forest understory. The Understory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).

Community 1.2

White Oak - Black Oak/Hickory/Virginia Wild Rye - Elm Leaved Goldenrod

This phase is similar to community phase 1.1 but oak and hickory understory densities are increasing due to longer periods of fire suppression. Displacement of some grasses and forbs may be occurring due to shading and competition from the increased densities of oak and hickory saplings in the understory.

State 2

Even-Age Managed Woodland

An even-age managed forest can resemble the reference state. The primary difference is tree age, most being only 50 to 90 years old. Composition is also likely altered from the reference state depending on tree selection during harvests and disturbance activities. Without a regular 15 to 20 year harvest re-entry into these stands, they will slowly increase in more shade tolerant species such as sugar maple and white oak will become less dominant. This state can be restored to a reference state by modifying or eliminating timber harvests, extending rotations, incorporating selective thinning, and re-introducing prescribed fire.

Community 2.1

White Oak - Black Oak/Red Elm/ Tick Trefoil

This is an even-aged forest management phase. Logging activities are removing higher volumes of white oak causing a decrease in white oak in the canopy and an increase in red oak. Large group, shelterwood or clearcut harvests create a more uniform age class structure throughout the canopy layer while also opening up the understory and allowing more sunlight to reach the forest floor.

State 3

Uneven-Age Managed Woodland

Due to selective single tree harvesting canopy densities have increased. Composition is likely altered from the Reference State depending on tree selection during harvest. This state will slowly increase in more shade tolerant species and white oak will become less dominant and is also dense because of fire suppression. Without periodic canopy disturbance, stem density and fire intolerant species, like hickory and maple will increase in abundance. This

state can be restored to a reference state by modifying or eliminating timber harvests, extending rotations, incorporating selective thinning, and re-introducing prescribed fire.

Community 3.1

White Oak – Mockernut Hickory – Maple/Ironwood/ Woodland Brome

This is an uneven-aged forest management phase. Selective logging activities are removing higher volumes of white oak causing a decrease in white oak in the canopy and an increase in red oak. Densities numbers, especially more shade tolerant species, are increasing at the lower size-class levels.

State 4 Cropland

This is a state that exists currently with intensive cropping of corn, soybeans, and wheat, especially on slopes of 5 percent or less. Some conversion to cool season grassland occurs for a limited period of time before transitioning back to cropland. Limited acres are sometimes converted to native warm season grassland.

Community 4.1 Corn, Soybeans, Wheat

This is a phase that exists currently with intensive cropping of corn, soybeans, and wheat occurring. Some conversion to cool season grassland occurs for a limited period of time before transitioning back to cropland.

State 5 Grassland

Conversion of other states to non-native cool season species such as tall fescue, orchard grass, and red clover has been common. Occasionally, these pastures will have scattered oaks. Long term uncontrolled grazing can cause significant soil erosion and compaction. A return to the reference state may be impossible, requiring a very long term series of management options. Two community phases are recognized in the grassland state, with shifts between phases based on types of management. Poor management will result in a shift to Community 5.2 that shows an increase in oak sprouting and increases in broomsedge densities. If oak sprouting is left unchecked and grazing is eliminated or reduced then over time this state will transition to an even-age managed woodland (livestock controlled and woodland management initiated) or to a high-graded/grazed woodland (continued grazing, high graded harvesting, and no woodland management).

Community 5.1

Tall Fescue - Orchard Grass - Red Clover

This phase is well-managed grassland, composed of non-native cool season grasses and legumes. Grazing and haying is occurring. The effects of long-term liming on soil pH, and calcium and magnesium content, is most evident in this phase. Studies show that these soils have higher pH and higher base status in soil horizons as much as two feet below the surface, relative to poorly managed grassland and to woodland communities (where liming is not practiced).

Community 5.2

Tall fescue - Broomsedge/Oak Sprouts

This phase is the result of over use, poor grassland and grazing management and lack of adequate nutrient application. Oak sprouts, oak saplings, and invasive species are increasing as a result of poor management.

State 6

High Graded/Grazed Woodland

States that were subjected to repeated, high-grading timber harvests and uncontrolled domestic grazing will transition to a High-Graded/Grazed Woodland State. This state exhibits an over-abundance of hickory and other less desirable tree species, and weedy understory species such as buckbrush, gooseberry, poison ivy and Virginia

creeper. The existing vegetation offers little nutritional value for cattle, and excessive cattle stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff. Two common transitions from this state are woody clearing and conversion to State 5, Grassland or removing livestock, limited harvesting, and allowing long term succession to occur to some other woodland or forest state.

Community 6.1 Hickory - Oak / Buckbrush - Gooseberry/ Aster

Due to high-grade logging and uncontrolled grazing, this community phase exhibits an over-abundance of hickory and other less economically desirable tree species and weedy understory species such as buckbrush, gooseberry, poison ivy and multi-flora rose. The understory vegetation offers little nutritional value for cattle, and excessive livestock stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff.

Additional community tables

Table 5. Community 1.1 forest overstory composition

Common Name	Symbol	Scientific Name	Nativity	Height (M)	Canopy Cover (%)	Diameter (Cm)	Basal Area (Square M/Hectare)
Tree		-					
sugar maple	ACSA3	Acer saccharum	Native	_	2–50	-	-
white oak	QUAL	Quercus alba	Native	_	2–50	-	-
northern red oak	QURU	Quercus rubra	Native	_	5–25	-	-
shagbark hickory	CAOV2	Carya ovata	Native	_	10–25	-	-
black oak	QUVE	Quercus velutina	Native	_	2–10	-	-
sassafras	SASSA	Sassafras	Native	_	2–10	-	-
white ash	FRAM2	Fraxinus americana	Native	-	0.1–10	-	_
American basswood	TIAM	Tilia americana	Native	_	2–5	-	_
mockernut hickory	CATO6	Carya tomentosa	Native	_	0–5	_	-
post oak	QUST	Quercus stellata	Native	_	_	_	-

Table 6. Community 1.1 forest understory composition

Common Name	Symbol	Scientific Name	Nativity	Height (M)	Canopy Cover (%)
Grass/grass-like (Graminoi	ds)	•	•	-	
Indian woodoats	CHLA5	Chasmanthium latifolium	Native	_	5–10
Bosc's panicgrass	DIBO2	Dichanthelium boscii	Native	_	0.1–5
eastern bottlebrush grass	ELHY	Elymus hystrix	Native	_	0.1–5
eastern woodland sedge	CABL	Carex blanda	Native	_	0.1–5
black edge sedge	CANI3	Carex nigromarginata	Native	_	1–2
poverty oatgrass	DASP2	Danthonia spicata	Native	_	1–2
hairy woodland brome	BRPU6	Bromus pubescens	Native	_	0.1–1
rattlesnake fern	BOVI	Botrychium virginianum	Native	_	0.1–1
Virginia wildrye	ELVI3	Elymus virginicus	Native	_	0.1–1
rock muhly	MUSO	Muhlenbergia sobolifera	Native	_	_
little bluestem	SCSC	Schizachyrium scoparium	Native	_	_
parasol sedge	CAUM4	Carex umbellata	Native	_	_
Pennsylvania sedge	CAPE6	Carex pensylvanica	Native	_	_
big bluestem	ANGE	Andropogon gerardii	Native	_	_
Forb/Herb	•		•	•	
elmleaf goldenrod	SOUL2	Solidago ulmifolia	Native	_	0.1–10
pointedleaf ticktrefoil	DEGL5	Desmodium glutinosum	Native	_	2–5
Baldwin's ironweed	VEBA	Vernonia baldwinii	Native	_	2–5
American hogpeanut	AMBR2	Amphicarpaea bracteata	Native	_	0.1–5
fourleaf milkweed	ASQU	Asclepias quadrifolia	Native	_	2–5
slender lespedeza	LEVI7	Lespedeza virginica	Native	_	2–5
manyray aster	SYAN2	Symphyotrichum anomalum	Native	_	1–2
hairy lespedeza	LEHI2	Lespedeza hirta	Native	_	1–2
eastern beebalm	MOBR2	Monarda bradburiana	Native	_	0.1–1
wild blue phlox	PHDI5	Phlox divaricata	Native	_	0.1–1
nakedflower ticktrefoil	DENU4	Desmodium nudiflorum	Native	_	0.1–1
eastern purple coneflower	ECPU	Echinacea purpurea	Native	_	_
hairy sunflower	HEHI2	Helianthus hirsutus	Native	_	_
Canadian blacksnakeroot	SACA15	Sanicula canadensis	Native	_	-
bluejacket	TROH	Tradescantia ohiensis	Native	_	-
Fern/fern ally		•	•		
rattlesnake fern	BOVI	Botrychium virginianum	Native	_	0.1–1
Shrub/Subshrub		•			
fragrant sumac	RHAR4	Rhus aromatica	Native	_	5–10
St. Andrew's cross	HYHY	Hypericum hypericoides	Native	_	1–2
coralberry	SYOR	Symphoricarpos orbiculatus	Native	_	1–2
leadplant	AMCA6	Amorpha canescens	_	_	0.1–1
New Jersey tea	CEAM	Ceanothus americanus	Native	_	_
American hazelnut	COAM3	Corylus americana	Native	_	_

Wildlife (MDC 2006):

Wild turkey, white-tailed deer, and eastern gray squirrel depend on hard and soft mast food sources and are typical upland game species of this type.

Oaks provide hard mast; scattered shrubs provide soft mast.

Native legumes provide high-quality wildlife food; sedges and native cool-season grasses provide green browse; patchy native warm-season grasses provide cover and nesting habitat; and a diversity of forbs provides a diversity and abundance of insects.

Post-burn areas can provide temporary bare-ground – herbaceous cover habitat important for turkey poults and quail chicks.

Bird species associated with mature communities include Indigo Bunting, Red-headed Woodpecker, Eastern Bluebird, Northern Bobwhite, Eastern Wood-Pewee, Broad-winged Hawk, Great-Crested Flycatcher, Summer Tanager, and Red-eyed Vireo.

Reptile and amphibian species associated with this site include tiger salamander, small-mouthed salamander, ornate box turtle, northern fence lizard, five-lined skink, broad-headed skink, flat-headed snake, and rough earth snake.

Other information

Forestry (NRCS 2002, 2014):

Management: Field collected site index values average 59 for white oak and 65 for northern red oak and black oak. Timber management opportunities are excellent. These groups respond well to management. Create group openings of at least 2 acres. Large clearcuts should be minimized if possible to reduce impacts on wildlife and aesthetics. Uneven-aged management using single tree selection or small group selection cuttings of ½ to 1 acre are other options that can be used if clear cutting is not desired or warranted. Uneven-aged management will slowly cause an increase in more shade tolerant species such as sugar maple. Using prescribed fire as a management tool could have a negative impact on timber quality or should be used with caution on a particular site if timber management is the primary objective. Where possible, favor white oak, black walnut, black cherry, and northern red oak.

Limitations: No major equipment restrictions or limitations exist. Erosion is a hazard when slopes exceed 15 percent. On steep slopes greater than 35percent, traction problems increase and equipment use is not recommended.

Inventory data references

Deep Loess Upland Woodland - Potential Reference - F115BY001MO

Plot BAATHS02 – Winfield soil Located in Battle of Athens National Historic Site, DNR, Clark County, MO Latitude: 40.590304

Longitude: -91.710488

Plot CLRAPR_KS03 – Winfield soil Located in Clatterbuck Ranch, Private, Boone County, MO

Latitude: 38.813261 Longitude: -92.148026

Plot HACRCA_JK01 – Menfro soil Located in Hart Creek CA, Boone County, MO

Latitude: 38.718624

Longitude: -92.32497151

Plot HACRCA_JK05 – Menfro soil Located in Hart Creek CA, Boone County, MO

Latitude: 38.712996 Longitude: -92.33039585

Plot HACRCA_KS07 – Menfro soil

Located in Hart Creek CA, Boone County, MO

Latitude: 38.713032 Longitude: -92.330373

Plot TRTESP_KS01 - Menfro soil

Located in Trail of Tears State Park, Cape Girardeau County, MO

Latitude: 37.46492 Longitude: -89.485402

Plot SCWOUM02 - Menfro soil – no data collected Located in Schnabel Woods, UMC, Boone County, MO

Latitude: 37.46492 Longitude: -89.485402

Plot WESPCA_JK05 – Menfro soil

Located in Weldon Springs CA, St. Charles County, MO

Latitude: 38.683516 Longitude: -90.70571419

Other references

MDC, 2006. Missouri Forest and Woodland Community Profiles. Missouri Department of Conservation, Jefferson City, Missouri.

Natural Resources Conservation Service. 2002. Woodland Suitability Groups. Missouri FOTG, Section II, Soil Interpretations and Reports. 30 pgs.

Natural Resources Conservation Service. Site Index Reports. Accessed May 2014. https://esi.sc.egov.usda.gov/ESI Forestland/pgFSWelcome.aspx

NatureServe, 2010. Vegetation Associations of Missouri (revised). NatureServe, St. Paul, Minnesota.

Nelson, Paul W. 2010. The Terrestrial Natural Communities of Missouri. Missouri Department of Conservation, Jefferson City, Missouri.

Nigh, Timothy A., & Walter A. Schroeder. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation, Jefferson City, Missouri.

Vano, Julie A. 2005. Land Surface Hydrology in Northern Wisconsin: Influences of climatic variability and land cover. University of Wisconsin-Madison.

Young, Fred J., Caryl A. Radatz, & Curtis A. Marshall. 2003. Soil Survey of Boone County, Missouri. U.S. Dept. of Agric. Natural Resources Conservation Service.

University of Missouri Climate Center - http://climate.missouri.edu/climate.php; accessed June 2012

Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin, United States Department of Agriculture Handbook 296 - http://soils.usda.gov/survey/geography/mlra/

Contributors

Doug Wallace Fred Young

Acknowledgments

Missouri Department of Conservation and Missouri Department of Natural Resources personnel provided significant and helpful field and technical support in the development of this ecological site.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

nc	licators
1.	Number and extent of rills:
2.	Presence of water flow patterns:
3.	Number and height of erosional pedestals or terracettes:
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
5.	Number of gullies and erosion associated with gullies:
6.	Extent of wind scoured, blowouts and/or depositional areas:
7.	Amount of litter movement (describe size and distance expected to travel):

8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
17.	Perennial plant reproductive capability: