

Ecological site F115XB022MO Loess High Terrace Forest

Accessed: 05/19/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 115X-Central Mississippi Valley Wooded Slopes

The Central Mississippi Valley Wooded Slopes, Western Part (area outlined in red on the map) consists mainly of the deeply dissected, loess-covered hills bordering the Missouri and Mississippi Rivers as well as the floodplains and terraces of these rivers. It wraps around the northeast corner of the Ozark Uplift, and constitutes the southern border of the Pre-Illinoisan-aged till plain. Elevation ranges from about 320 feet along the Mississippi River near Cape Girardeau in the south to about 1,020 feet on the highest ridges near Hillsboro, MO in the east. Local relief varies from 10 to 20 feet in the major river floodplains, to 50 to 100 feet in the dissected uplands, with bluffs of 200 to 350 feet along the Mississippi and Missouri Rivers. Underlying bedrock is mainly Ordovician-aged dolomite and sandstone, with Mississippian-aged limestone north of the Missouri River.

Classification relationships

Terrestrial Natural Community Type in Missouri (Nelson, 2010):

The reference state for this ecological site is most similar to a Mesic Bottomland Forest.

Missouri Department of Conservation Forest and Woodland Communities (MDC, 2006):

The reference state for this ecological site is most similar to a Mixed Hardwood Mesic Bottomland Forest.

National Vegetation Classification System Vegetation Association (NatureServe, 2010):

The reference state for this ecological site is most similar to a Quercus alba - Quercus rubra - Acer saccharum - Carya cordiformis / Lindera benzoin Forest (CEGL002058).

Geographic relationship to the Missouri Ecological Classification System (Nigh & Schroeder, 2002):

This ecological site occurs primarily in Land Type Associations of the following Subsections:

Inner Ozark Border

Outer Ozark Border

Mississippi River Hills

Ecological site concept

NOTE: This is a "provisional" Ecological Site Description (ESD) that is under development. It contains basic ecological information that can be used for conservation planning, application and land management. After additional information is collected, analyzed and reviewed, this ESD will be refined and published as "Approved".

Loess High Terrace Forests (green areas on the map) are scattered throughout the Missouri River watershed

portion of the MLRA, and in adjacent areas to the north. Soils are very deep, with no rooting restrictions. The reference plant community is forest dominated by a variety of trees including white oak, sugar maple, northern red oak, bitternut hickory, bur oak, American elm, walnut and Kentucky coffee tree, with a well-developed understory and a rich herbaceous ground flora.

Associated sites

F115XB004MO	Loess Upland Woodland Loess Upland Woodlands are on summit positions above these ecological sites.
F115XB014MO	Chert Limestone/Dolomite Protected Backslope Forest Chert Limestone/Dolomite Protected Backslope Forest are upslope on northerly and easterly aspects.
F115XB031MO	Loamy Floodplain Forest Loamy Floodplain Forests are below in the floodplain.
F115XB046MO	Chert Limestone/Dolomite Exposed Backslope Woodland Chert Limestone/Dolomite Exposed Backslope Woodland are upslope on westerly and southerly aspects.

Similar sites

F115XB024MO	Loamy Terrace Forest
	Loamy Terrace Forests are on lower terrace areas that do experience some periodic flooding. Overstory
	species composition is similar.

Table 1. Dominant plant species

Tree	(1) Quercus alba(2) Acer saccharum
Shrub	(1) Lindera benzoin
Herbaceous	(1) Polemonium reptans(2) Asarum canadense

Physiographic features

This site is on high stream terraces that are typically loess-covered, with slopes of 1 to 5 percent. The site receives runoff from adjacent upland sites. This site does not flood.

Table 2. Representative physiographic features

Landforms	(1) Hill (2) Stream terrace
Flooding frequency	None
Ponding frequency	None
Slope	1–15%
Water table depth	51–152 cm
Aspect	Aspect is not a significant factor

Climatic features

The Central Mississippi Valley Wooded Slopes, Western Part has a continental type of climate marked by strong seasonality. In winter, dry-cold air masses, unchallenged by any topographic barriers, periodically swing south from the northern plains and Canada. If they invade reasonably humid air, snowfall and rainfall result. In summer, moist, warm air masses, equally unchallenged by topographic barriers, swing north from the Gulf of Mexico and can produce abundant amounts of rain, either by fronts or by convectional processes. In some summers, high pressure stagnates over the region, creating extended droughty periods. Spring and fall are transitional seasons when abrupt changes in temperature and precipitation may occur due to successive, fast-moving fronts separating contrasting air masses.

The Central Mississippi Valley Wooded Slopes, Western Part experiences regional differences in climates, but these differences do not have obvious geographic boundaries. Regional climates grade inconspicuously into each other. The basic gradient for most climatic characteristics is along a line diagonally crossing the MLRA from northwest to southeast. Both mean annual temperature and precipitation exhibit gradients along this line.

The average annual precipitation in most of this area is 38 to 48 inches. The average annual temperature is 53 to 57 degrees F. Mean January minimum temperature follows the northwest-to-southeast gradient. However, mean July maximum temperature shows hardly any geographic variation in the MLRA. Mean July maximum temperatures have a range of only two or three degrees across the area.

Mean annual precipitation varies along the same gradient as temperature. Seasonal climatic variations are more complex. Seasonality in precipitation is very pronounced due to strong continental influences. June precipitation, for example, averages three to four times greater than January precipitation. Most of the rainfall occurs as high-intensity, convective thunderstorms in summer. Snowfall is common in winter.

During years when precipitation comes in a fairly normal manner, moisture is stored in the top layers of the soil during the winter and early spring, when evaporation and transpiration are low. During the summer months the loss of water by evaporation and transpiration is high, and if rainfall fails to occur at frequent intervals, drought will result. Drought directly affects plant and animal life by limiting water supplies, especially at times of high temperatures and high evaporation rates.

Superimposed upon the basic MLRA climatic patterns are local topographic influences that create topoclimatic, or microclimatic variations. In regions of appreciable relief, for example, air drainage at nighttime may produce temperatures several degrees lower in valley bottoms than on side slopes. At critical times during the year, this phenomenon may produce later spring or earlier fall freezes in valley bottoms. Higher daytime temperatures of bare rock surfaces and higher reflectivity of these unvegetated surfaces may create distinctive environmental niches such as glades and cliffs. Slope orientation is an important topographic influence on climate. Summits and south-and-west-facing slopes are regularly warmer and drier than adjacent north- and-east-facing slopes. Finally, the climate within a canopied forest is measurably different from the climate of a more open grassland or savanna areas.

Source: University of Missouri Climate Center - http://climate.missouri.edu/climate.php; accessed June 2012

Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin, United States Department of Agriculture Handbook 296 - http://soils.usda.gov/survey/geography/mlra/

Table 3. Representative climatic features

Frost-free period (average)	175 days
Freeze-free period (average)	198 days
Precipitation total (average)	1,194 mm

Climate stations used

- (1) COLUMBIA U OF M [USC00231801], Columbia, MO
- (2) SPARTA 1 W [USC00118147], Sparta, IL
- (3) JACKSON [USC00234226], Jackson, MO
- (4) ALTON MELVIN PRICE L&D [USC00110137], West Alton, IL
- (5) JEFFERSON CITY WTP [USC00234271], Jefferson City, MO

Influencing water features

This ecological site is typically associated with, but not adjacent to, a perennial stream. This site is subject to rare to occasional flooding. Stream levels typically respond quickly to storm events, especially in watersheds where surface runoff is dominant. Constructed levees, often accompanied by stream channelization, have altered the

hydrology and flooding dynamics in many places. The site receives runoff from adjacent upland sites. This site does not flood.

Soil features

These soils have no rooting restriction. The soils were formed under forest vegetation, and have thin, light-colored surface horizons. Parent material is loess, or loamy alluvium. Surface horizons are primarily silt loam. Subsurface horizons are loamy or clayey. Some soils are slightly affected by seasonal wetness. Soil series associated with this site include Iva, Geff, Kliever, Martinsville, Menfro, Weller, and Winfield.

The accompanying picture of the Weller series shows a thin, light-colored surface horizon overlying the brown silty clay loam subsoil. Roots can be seen throughout the soil profile. (photo credit: NRCS)

Figure 6. Weller series

Table 4. Representative soil features

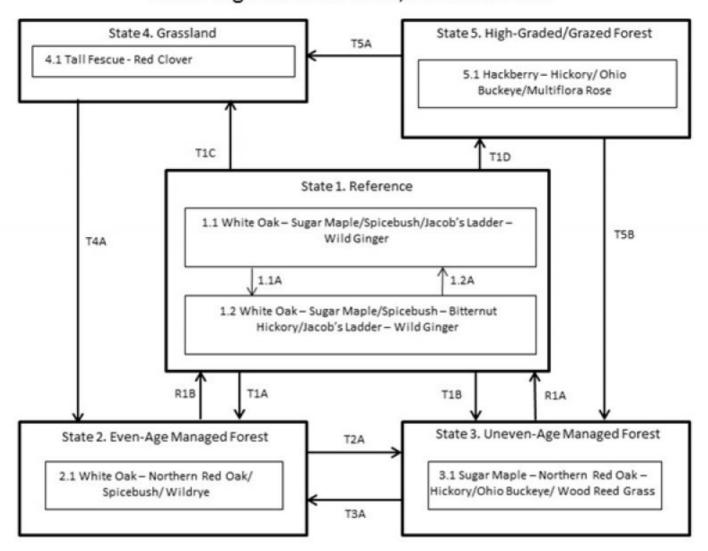
Surface texture	(1) Silt loam (2) Loam
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained
Permeability class	Very slow to moderately slow
Soil depth	183 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	15.24–20.32 cm
Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0–2 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	4.5–7.3
Subsurface fragment volume <=3" (Depth not specified)	0–9%
Subsurface fragment volume >3" (Depth not specified)	0–3%

Ecological dynamics

Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.

Loess High Terrace Forests in the Ozark Border are on relatively high stable former floodplain positions. The reference plant community is dominated by a wide variety of deciduous hardwood tree species including white oak, sugar maple, northern red oak, bitternut hickory, bur oak, American elm, walnut and Kentucky coffee tree. Trees are generally large and tall forming a dense, closed canopy. Both historically and today, these forests are structurally and compositionally diverse, with occasional tree-fall gaps and natural mortality providing opportunities for regeneration of overstory species. The understory is also complex, with multiple layers of shade tolerant species such as pawpaw, spicebush, and Ohio buckeye. Grape vines, greenbriar, and Virginia creeper are also present along with a diverse array of ground flora species that carpets the forest floor.

Today, most of the rich, loamy Loess High Terrace Forests are largely converted to pasture and cropland. Where they still occur, these areas of forest play an important role as a source of food and shelter for migrating birds, and water quality. In addition, they are very important in stream bank stabilization. Uncontrolled grazing by domestic livestock in these remaining areas of forest damages and kills smaller trees and removes the ground cover. Carefully planned timber harvests can be tolerated on these sites, but high grading of the timber will ultimately degrade the sites. Re-establishment of these forests is important for stream quality and stream health, and as critical habitat for migratory birds. Planting of later successional species on the appropriate landscape position and soils has proven to be an effective means for restoration.


A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.

Ecological Site Correlation Issues and Questions:

There is uncertainty with selected footslope and high terrace sites. High quality Loess High Terrace Forest (F115BY022MO) and Wet Footslope Forest (F115BY023MO) reference ecological sites are absent from the current landscape. Conceptually they appear to be distinct ecological sites due to potential drainage and permeability issues but without any field varication it may be best to combine these two sites especially since Wet Footslope Forest (F115BY023MO) has only four, small acreage map units (McGirk: 10103, 10104, 10178, 60162) assigned to it.

State and transition model

Loess High Terrace Forest, F115BY022MO

Code	Activity/Event/Process
T1A	Harvesting, even-aged management
T1B	Harvesting uneven-age management
T1C, T5A	Clearing; pasture planting
T1D	High-grade harvesting; uncontrolled grazing
T2A	Uneven-age management
T3A	Even-age management; thinning
T4A, T5A	Tree planting; long-term succession; no grazing
T5B	Uneven-age management; tree planting; no grazing

Code	Activity/Event/Process
1.1A	No disturbance (10+ years)
1.2A	Disturbance (fire, wind, ice) 3-5 years

Code	Activity/Event/Process
R1A	Extended rotations; forest stand improvement
R1B	Uneven-age mgt, extended rotations; forest stand improvement

Figure 7. State and transition diagram for this ecological s

Reference

The reference state was dominated by white oak and sugar maple including a wide variety of other deciduous hardwood tree species. Maximum tree age was likely 150 to 300 years. Periodic disturbances from fire, wind or occurred. Long disturbance-free periods allowed an increase in more shade tolerant species such as bitternut hickory and sugar maple. Two community phases are recognized in this state, with shifts between phases based on disturbance frequency. The reference state is rare today. Some sites have been converted to grassland (State 4). Others have been subject to repeated, high-graded timber harvest coupled with uncontrolled domestic livestock grazing (State 5). Many reference sites have been managed for timber harvest, resulting in either even-age (State 2) or uneven-age (State 3) forests

Community 1.1

White Oak - Sugar Maple/Spicebush/Jacob's Ladder - Wild Ginger

This phase is dominated by a wide variety of deciduous hardwood tree species including white oak, sugar maple, northern red oak, bitternut hickory, bur oak, American elm, walnut and Kentucky coffee tree. Trees are generally large and tall forming a dense, closed canopy. Both historically and today, these forests are structurally and compositionally diverse.

Forest overstory. The Overstory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).

Forest understory. The Understory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).

Community 1.2

White Oak - Sugar Maple/Spicebush - Bitternut Hickory/Jacob's Ladder - Wild Ginger

This phase is similar to community phase 1.1 but sugar maple densities are increasing due to longer periods of fire suppression (>20 years) and lack of natural disturbances such as ice and wind. Displacement of some less shade tolerant grasses and forbs along with lower densities of most species may be occurring due to shading and competition from the increased densities of oak, maple and hickory saplings in the mid-story.

State 2

Even-Age Managed Forest

These former forests are now rather dense, with an under developed understory and ground flora. Thinning can increase overall tree vigor and improve understory diversity. Continual timber management, depending on the practices used, will either maintain this state, or convert the site to uneven-age (State 3) forests.

Community 2.1

White Oak - Northern Red Oak/ Spicebush/ Wildrye

Long disturbance-free periods allowed an increase in more shade tolerant species such as northern red oak and sugar maple with increased canopy density, which has affected the abundance and diversity of ground flora.

State 3

Uneven-Age Managed Forest

Uneven-Age Managed forests can resemble the reference state but are denser. The biggest differences are tree age, most being only 50 to 90 years old, and canopy closure. Composition is also likely altered from the reference state depending on tree selection during harvest. In addition, without a regular 15 to 20 year harvest re-entry into these stands, they will slowly increase in more shade tolerant species such as bitternut hickory and sugar maple and northern red oak will become less dominant.

Community 3.1

Sugar Maple – Northern Red Oak – Hickory/Ohio Buckeye/ Wood Reed Grass

This is an uneven-aged forest management phase. Selective logging activities are removing higher volumes of white oak causing a decrease in white oak in the canopy and an increase in northern red oak, hickory and sugar maple. Densities numbers, especially more shade tolerant species, are increasing at the lower size-class levels.

State 4 Grassland

Conversion of forests to planted, non-native pasture species such as tall fescue has been common in this region. If grazing and active pasture management is discontinued, the site will eventually transition, over time, to State 2 (Even-Age).

Community 4.1 Tall Fescue - Red Clover

This phase is a well-managed grassland, composed of non-native cool season grasses and legumes. Grazing and haying is occurring. The effects of long-term liming on soil pH, and calcium and magnesium content, is most evident in this phase. Studies show that these soils have higher pH and higher base status in soil horizons as much as two feet below the surface, relative to poorly managed grassland and to woodland communities (where liming is not practiced).

State 5 High-Graded/Grazed Woodland

Forested sites subjected to repeated, high-graded timber harvests and uncontrolled domestic grazing transition to this state. This state exhibits an over-abundance of hickory and other less desirable tree species, and weedy understory species such as buckbrush, gooseberry, poison ivy and Virginia creeper. The vegetation offers little nutritional value for cattle, and excessive stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff. Exclusion of livestock from sites in this state coupled with uneven-age management techniques will cause a transition to State 3 (Uneven-Age).

Community 5.1 Hackberry – Hickory/ Ohio Buckeye/Multiflora Rose

Due to high-grade logging and uncontrolled grazing, this community phase exhibits an over-abundance of hickory and other less economically desirable tree species and weedy understory species such as buckbrush, gooseberry, poison ivy and multi-flora rose. The understory vegetation offers little nutritional value for cattle, and excessive livestock stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff.

Additional community tables

Table 5. Community 1.1 forest overstory composition

Common Name	Symbol	Scientific Name	Nativity	Height (M)	Canopy Cover (%)	Diameter (Cm)	Basal Area (Square M/Hectare)	
Tree								
white oak	QUAL	Quercus alba	Native	_	5–95	_	-	
bitternut hickory	CACO15	Carya cordiformis	Native	_	10–25	_	_	
shagbark hickory	CAOV2	Carya ovata	Native	_	2–25	_	_	
mockernut hickory	CATO6	Carya tomentosa	Native	-	5–10	_	_	
Shumard's oak	QUSH	Quercus shumardii	Native	_	5–10	_	_	
northern red oak	QURU	Quercus rubra	Native	_	5–10	_	_	
sugar maple	ACSA3	Acer saccharum	Native	_	2–5	_	_	
Kentucky coffeetree	GYDI	Gymnocladus dioicus	Native	-	_	_	_	
American elm	ULAM	Ulmus americana	Native	_	_	_	_	
slippery elm	ULRU	Ulmus rubra	Native	_	_	_	-	
green ash	FRPE	Fraxinus pennsylvanica	Native	-	-	_	-	
American sycamore	PLOC	Platanus occidentalis	Native	-	-	_	_	
bur oak	QUMA2	Quercus macrocarpa	Native	_	_	_	_	
Tree Fern	•	•	•		-			
black walnut	JUNI	Juglans nigra	Native	-	_	_	_	

Table 6. Community 1.1 forest understory composition

Common Name	non Name Symbol Scientific Name		Nativity	Height (M)	Canopy Cover (%)
Grass/grass-like (Graminoids)					
Indian woodoats	CHLA5	Chasmanthium latifolium		_	10–25
Bosc's panicgrass	DIBO2	Dichanthelium boscii	Native	-	2–5
eastern bottlebrush grass	ELHY	Elymus hystrix	Native	_	1–2
rock muhly	MUSO	Muhlenbergia sobolifera	Native	_	1–2
eastern star sedge	CARA8	Carex radiata	Native	_	_
sweet woodreed	CIAR2	Cinna arundinacea	Native	_	_
Virginia wildrye	ELVI3	Elymus virginicus	Native	_	_
Forb/Herb	-		- -	•	
pointedleaf ticktrefoil	DEGL5	Desmodium glutinosum	Native	_	1–2
Greek valerian	PORE2	Polemonium reptans	Native	_	_
calico aster	SYLAL7	Symphyotrichum lateriflorum var. lateriflorum	Native	_	_
Canadian woodnettle	LACA3	Laportea canadensis	Native	_	_
nodding wakerobin	TRFL6	Trillium flexipes	Native	-	_
eastern waterleaf	HYVI	Hydrophyllum virginianum	Native	_	_
pale touch-me-not	IMPA	Impatiens pallida	Native	_	_
Canadian wildginger	ASCA	Asarum canadense	Native	-	_
green dragon	ARDR3	Arisaema dracontium	Native	_	_
white fawnlily	ERAL9	Erythronium albidum	Native	_	-
Virginia bluebells	MEVI3	Mertensia virginica	Native	_	_
Shrub/Subshrub					
northern spicebush	LIBE3	Lindera benzoin	Native	_	_
burningbush	EUAT5	Euonymus atropurpureus	Native	_	_
Tree					
American hornbeam	CACA18	Carpinus caroliniana	Native	_	5–10
pawpaw	ASTR	Asimina triloba	Native	_	_
Ohio buckeye	AEGL	Aesculus glabra	Native	_	-
Vine/Liana					
Virginia creeper	PAQU2	Parthenocissus quinquefolia	Native	_	_

Animal community

Wildlife (MDC 2006):

Moist conditions with abundant coarse woody debris make this type of ecological site important for many herptiles. Ephemeral pools provide important amphibian breeding habitat.

Tall emergent trees along with an uneven canopy structure and canopy gaps are important for heron colonies, eagle nesting, Mississippi kites, cerulean warblers and other bird species.

Birds associated with late-successional to mature forests are Wood Duck, Hooded Merganser, Barred Owl, Cerulean Warbler, Yellow-throated Warbler, Prothonotary Warbler, Pileated Woodpecker, Yellow-throated Vireo, Brown Creeper, and Yellow-crowned Night Heron.

Reptiles and amphibians associated with ecological site include: small-mouthed salamander, central newt, midland brown snake, gray treefrog, northern spring peeper, Blanchard's cricket frog, southern leopard frog, western painted turtle, and red-eared slider.

Other information

Forestry (NRCS 2002, 2014):

Management: Field measured site index values are 60 for white oak and 66 for black oak. Timber management opportunities are excellent. Create group openings of at least 2 acres. Large clearcuts should be minimized if possible to reduce impacts on wildlife and aesthetics. Uneven-aged management using single tree selection or small group selection cuttings of ½ to 1 acre are other options that can be used if clear cutting is not desired or warranted. Uneven-aged management will slowly cause an increase in more shade tolerant species such as sugar maple. Using prescribed fire as a management tool could have a negative impact on timber quality, may not be fitting, or should be used with caution on a particular site if timber management is the primary objective. Where possible, favor white oak, black walnut, black cherry, and northern red oak.

Limitations: No major equipment restrictions or limitations exist.

Inventory data references

Loess High Terrace Forest – Potential Reference – F115BY022MO

Plot BAWIUM04 – Menfro soil Located in Baskett Wilderness Area, Boone County, MO Latitude: 38.748522 Longitude: -92.207194

Plot DIGGCA02 – Iva soil Located in Marshall Diggs CA, Audrain County, MO Latitude: 39.07988 Longitude: -91.6357

Plot ROBRSP02 – Menfro soil – no data Located in Rockbridge State Park, Boone County, MO Latitude: 38.877288

Longitude: -92.305282

Plot ROBRSP01 – Menfro soil Located in Rockbridge State Park, Boone County, MO Latitude: 38.880634 Longitude: -92.300159

Other references

Brinson, M.M. 1993. A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4, U.S. Army Corps of Engineers, Engineer Waterways Experiment Station, Vicksburg, MS.

Cowardin, L.M., V. Carter, F.C. Golet, & E.T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Dept. of Interior, Fish & Wildlife Service, Office of Biological Services, Washington DC.

MDC, 2006. Missouri Forest and Woodland Community Profiles. Missouri Department of Conservation, Jefferson City, Missouri.

Natural Resources Conservation Service. 2002. Woodland Suitability Groups. Missouri FOTG, Section II, Soil Interpretations and Reports. 30 pgs.

Natural Resources Conservation Service. Site Index Reports. Accessed May 2014. https://esi.sc.egov.usda.gov/ESI_Forestland/pgFSWelcome.aspx

NatureServe, 2010. Vegetation Associations of Missouri (revised). NatureServe, St. Paul, Minnesota.

Nelson, Paul W. 2010. The Terrestrial Natural Communities of Missouri. Missouri Department of Conservation, Jefferson City, Missouri.

Nigh, Timothy A., & Walter A. Schroeder. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation, Jefferson City, Missouri.

University of Missouri Climate Center - http://climate.missouri.edu/climate.php; accessed June 2012

Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin, United States Department of Agriculture Handbook 296 - http://soils.usda.gov/survey/geography/mlra/

Contributors

Fred Young Doug Wallace

Acknowledgments

Missouri Department of Conservation and Missouri Department of Natural Resources personnel provided significant and helpful field and technical support in the development of this ecological site.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators									
1.	Number and extent of rills:								
2.	Presence of water flow patterns:								
3.	Number and height of erosional pedestals or terracettes:								
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):								

5.	Number of gullies and erosion associated with gullies:						
6.	Extent of wind scoured, blowouts and/or depositional areas:						
7.	Amount of litter movement (describe size and distance expected to travel):						
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):						
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):						
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:						
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):						
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):						
	Dominant:						
	Sub-dominant:						
	Other:						
	Additional:						
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):						
14.	Average percent litter cover (%) and depth (in):						
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):						
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize						

degraded states and have the potential to become a dominant or co-dominant species on the ecological site if

become dor	minant for only ints. Note that	t and growth is y one to sever unlike other in	al years (e.g.	, short-term r	esponse to d	rought or wil	dfire) are not	
Perennial pl	lant reproduct	ive capability:						