

Ecological site NX118A01Y008 Fluventic Flood Plain

Last updated: 9/22/2023 Accessed: 04/28/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 118A-Arkansas Valley and Ridges, Eastern Part

Major Land Resource Area 118A, Arkansas Valley and Ridges Eastern Part, is in Arkansas and Oklahoma. This MLRA is about 6,755 square miles (17,495 square kilometers). The Ozark National Forest and the northern portion of the Ouachita National Forest occur in this MLRA.

This area is mostly in the Arkansas Valley Section of the Ouachita Province of the Interior Highlands. Small areas in the southeast corner and the south-central part of the MLRA are in the Ouachita Mountains. This MLRA consists of long, narrow ridges and high flat-topped mountains capped with sandstone that trend northeastward. Crests are narrow and rolling on ridges, while broad and flat on mountaintops. The intervening valleys are broad and smooth. Elevations generally range from 310 feet (90 meters) to 760 feet (230 meters) with higher and lower elevations on the valleys and ridgetops.

The ridgetops and valleys in this MLRA are underlain by slightly folded to level beds of sandstone and shale of the Pennsylvanian age. The terrace deposits along the Arkansas River include a complex sequence of unconsolidated gravel, sandy gravel, sands, silty sands, silts, clayey silts, and clays. The individual deposits are commonly lenticular and discontinuous. At least three terrace levels are recognized with the lowest being the youngest.

The dominant soil orders in this MLRA are Ultisols. The soils in the area have a thermic soil temperature regime, a udic soil moisture regime, and mixed or siliceous mineralogy.

Ecological site concept

The Fluventic Flood Plain ecological site is in river valleys along flood plains. This site has slopes between 0 and 3 percent with elevations ranging from 200 to 1,510 feet (60 to 460 meters). The soils associated with this site are deep to very deep and formed in alluvium derived from sandstone and siltstone. Important abiotic characteristics associated with this site are soil profiles with little development, irregular decreases in organic carbon, redox reactions at deeper depths, and stratified textures with a buried A horizon. Rare to occasional flooding events occur for very brief to brief durations.

Associated sites

NX118A01Y007	Seasonally Wet Terraces and Footslopes
	This ecological site is differentiated from the Fluventic Flood Plain Ecological Site by landscape position
	and a perched watertable during the winter and spring seasons.

Similar sites

Table 1. Dominant plant species

Tree	(1) Quercus (2) Carya
Shrub	(1) Forestiera
Herbaceous	(1) Panicum virgatum

Legacy ID

F118AY008AR

Physiographic features

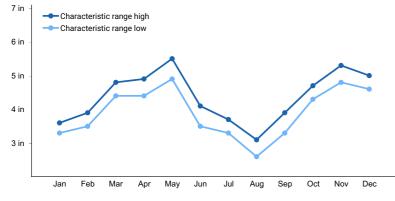
This ecological site is in river valleys along flood plains. This site has slopes between 0 and 3 percent. Elevations range from 200 to 1,510 feet (60 to 460 meters). Runoff class varies from negligible to low, with no ponding, and rare to occasional flooding events (1 to 5 times in 100 years to more than 5 to 50 times in 100 years) for very brief to brief durations (4 to 48 hours to 2 to 7 days).

Landforms	(1) River valley > Flood plain	
Runoff class	Negligible to low	
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)	
Flooding frequency	Rare to occasional	
Ponding frequency	None	
Elevation	200–1,510 ft	
Slope	0–3%	
Water table depth	12–72 in	
Aspect	Aspect is not a significant factor	

Table 2. Representative physiographic features

Climatic features

This ecological site is characterized by hot summers, cool winters, and mild spring and fall temperatures. Mean annual precipitation is 49 inches. The average frost-free period is 193 days, and the average freeze-free period is 212 days. The highest precipitation occurs in May (6 inches), and the lowest occurs in January (2.8 inches). The warmest month of the year is August (94°F average high), and the coolest is January (26°F average low).


Thunderstorms and heat waves are common and occur frequently during summer months. Catastrophic storm events, such as tornados, ice-storms, floods, and hail-storms are also known to occasionally occur within this ecological site. According to the Oklahoma Water Resource Board, drought occurs on 5 to 10 year cycles. The EPA predicts that droughts will become more severe throughout Arkansas due to longer periods without rain and an increase in very hot days (EPA, 2016).

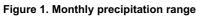

Data was provided by the Blue Mountain Dam, Clarksville, Greers Ferry Dam, Poteau, Sallisaw, and Subiaco climate stations. Site specific data should be obtained by accessing the database provided by the National Centers for Environmental Information (https://www.ncdc.noaa.gov/cdo-web/search).

Table 3. Representative climatic features

Frost-free period (characteristic range)	178-192 days
--	--------------

Freeze-free period (characteristic range)	198-218 days
Precipitation total (characteristic range)	49-50 in
Frost-free period (actual range)	170-194 days
Freeze-free period (actual range)	193-222 days
Precipitation total (actual range)	47-51 in
Frost-free period (average)	183 days
Freeze-free period (average)	209 days
Precipitation total (average)	49 in

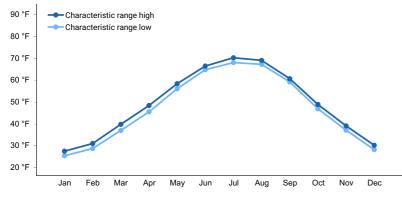


Figure 2. Monthly minimum temperature range

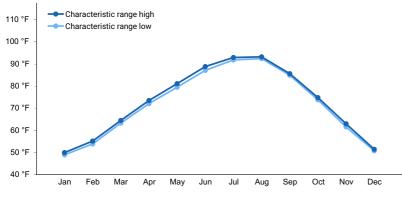


Figure 3. Monthly maximum temperature range

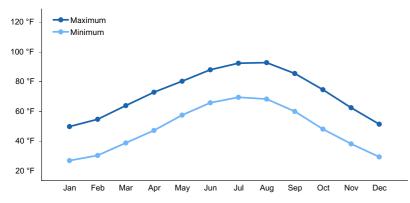


Figure 4. Monthly average minimum and maximum temperature

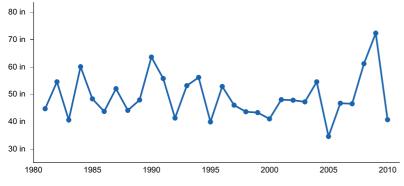


Figure 5. Annual precipitation pattern

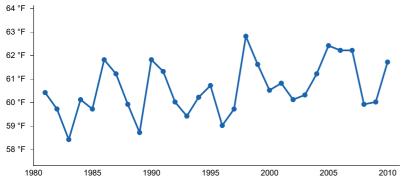


Figure 6. Annual average temperature pattern

Climate stations used

- (1) GREENBRIER [USC00032962], Greenbrier, AR
- (2) SEARCY [USC00036506], Judsonia, AR
- (3) MORRILTON [USC00034938], Morrilton, AR
- (4) CONWAY [USC00031596], Conway, AR
- (5) WOOSTER [USC00038010], Greenbrier, AR
- (6) FT SMITH RGNL AP [USW00013964], Fort Smith, AR
- (7) OZARK [USC00035508], Ozark, AR
- (8) CABOT [USC00031102], Cabot, AR

Influencing water features

This ecological site is subject to rare to occasional flooding events(1 to 5 times in 100 years to more than 5 to 50 times in 100 years) for very brief to brief durations (4 to 48 hours to 2 to 7 days).

Wetland description

This ecological site is not significantly influenced by wetlands.

Soil features

The soils associated with this ecological site are formed in alluvium derived from sandstone and siltstone. These soils are deep to very deep, moderately well to well drained, and have a moderate to moderately rapid permeability class. A silt or fine sandy loam surface texture is common. Important abiotic characteristics associated with this site are soil profiles with little development, irregular decreases in organic carbon, redox reactions at deeper depths, and stratified textures with a buried A horizon.

The soil series associated with this site are Barling, Luka, Morganfield, and Lynnville.

Parent material	(1) Alluvium-sandstone and siltstone	
Surface texture	(1) Loam (2) Fine sandy loam	
Drainage class	Moderately well drained to well drained	
Permeability class	Moderate to moderately rapid	
Soil depth	60–80 in	
Surface fragment cover <=3"	0–1%	
Surface fragment cover >3"	0%	
Available water capacity (Depth not specified)	3.1–9.1 in	
Soil reaction (1:1 water) (Depth not specified)	5.1–8.4	
Subsurface fragment volume <=3" (Depth not specified)	0–1%	
Subsurface fragment volume >3" (Depth not specified)	0%	

Table 4. Representative soil features

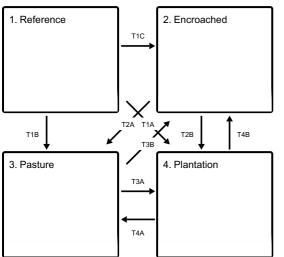
Ecological dynamics

The Fluventic Flood Plains reference state consists of a bottomland hardwood forest that is periodically flooded throughout the year. The common trees species for this state are hickory, oak, hackberry, elm, and loblolly pine (Eldredge, 1937).

Flooding is a major ecosystem disturbance on this ecological site. Ecosystems are affected differently by flooding depending on the duration, time of year, and water stagnation. Species diversity has been shown to decrease with increased flooding duration. Nutrients and seeds are transported and distributed throughout the landscape during flooding events (Smith and Callahan, 1983). Flooding during the dormant season does not have negative effects on species diversity and growth (Bedinger, 1979).

Fire has some influence on this ecological site during dry years. High precipitation throughout the year will decrease fire behavior due to proximity with riparian areas. The historical average fire return interval was likely between 3 and 25 years (Guyette and Spetich, 2003; Hallgren, DeSantic, and Burton, 2012). These fires would occur naturally through lightning strikes, but the majority were probably ignited by anthropogenic sources (DeSantis, Hallgren, and Stahle, 2010).

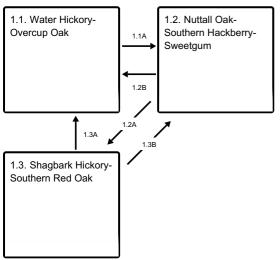
Climate related events, such as hail-storms, tornados, thunderstorms, and extreme precipitation, occur on these sites. Hail-storms can reduce canopy size, increase litter deposition, and increase tree bark removal. When paired with other disturbances, such as fire, the effects on tree species were much greater than in areas not affected by hail-storms (Gower et al., 2015). Tornados have been shown to change plant community compositions in savanna ecosystems, favoring hardwoods and eliminating softwoods (Liu et al., 1997). Thunderstorms greatly effect ecosystem dynamics. Thunderstorms generally occur during summer months but can occur during every season. If a fire is started by a lightning strike, there will be different effects in the ecosystem depending on the season (Hiers,


Wyatt, and Mitchell, 2000).

Grazing and farming can occur on this ecological site. Changes to the ecological dynamics are proportional to the intensity of livestock grazing and can be accelerated by overgrazing (Angerer, Fox, and Wolfe, 2013; Kohl, 2016). For example, desirable grasses and forbs are repeatedly grazed by livestock, weakening, and potentially killing or replacing these species with less desirable species (Smith, 1940).

A state and transition model has been created to explain this Ecological Site. However, sparse data availability only allowed basic principles to be explored and a small number of species to be recorded. More data will be collected to provide a greater understanding of the ecological dynamics, as well as the resources consumption and distribution.

State and transition model


Ecosystem states

T1C - Absence of fire or alternative brush management, woody species encroachment.

- T1B Tree removal, mechanical and chemical woody vegetation suppression, tillage, introduce annual or perennial forage species.
- T1A Tree removal, brush management, plantation tree establishment and management.
- T2A Tree removal, mechanical and chemical woody vegetation suppression, tillage, introduce annual or perennial forage species.
- T2B Woody species removal, plantation tree planting, prescribed fire.
- T3B Lack of management or abandonment.
- T3A Forage species suppression, brush management, plantation tree establishment and management.
- T4B Lack of management or abandonment.
- T4A Woody species removal, prescribed fire, seeding, and grazing.

State 1 submodel, plant communities

- 1.2B More water, increased flooding
- 1.2A Less water, decreased flooding
- 1.3A More water, increased flooding
- 1.3B More water, increased flooding

State 1 Reference

The Reference State is representative of the natural range of variability without major anthropogenic influences. Drivers- Flooding duration and frequency, climate (decadal scale), insect and disease presence or establishment, wildlife grazing or browsing, and fire frequency. Feedbacks- Water tolerant tree species dominate this ecological site. Flooding events limit what species can grow and survive inundation.

Characteristics and indicators. The reference state consists of a bottomland hardwood forest that is periodically flooded throughout the year.

Dominant plant species

- oak (Quercus), tree
- hybrid hickory (Carya), tree
- hackberry (Celtis), tree
- sycamore (Platanus), tree
- pine (Pinus), tree
- sweetgum (Liquidambar), tree
- switchgrass (Panicum virgatum), grass

Community 1.1 Water Hickory-Overcup Oak

Water Hickory and Overcup Oak.

Community 1.2 Nuttall Oak- Southern Hackberry- Sweetgum

Nuttall Oak, Southern Hackberry, and Sweetgum.

Community 1.3 Shagbark Hickory- Southern Red Oak

Shagbark Hickory and Southern Red Oak.

Pathway 1.1A Community 1.1 to 1.2

This pathway is characterized by periods of lower precipitation and decreased flooding.

Pathway 1.2B Community 1.2 to 1.1

This pathway is characterized by periods of higher precipitation and increased flooding.

Pathway 1.2A Community 1.2 to 1.3

This pathway is characterized by periods of lower precipitation and decreased flooding.

Pathway 1.3A

Community 1.3 to 1.1

This pathway is characterized by periods of higher precipitation and increased flooding.

Pathway 1.3B Community 1.3 to 1.2

This pathway is characterized by periods of higher precipitation and increased flooding.

State 2 Encroached

The encroached state is dominated by woody species. Driver: Absence of fire, seed dispersal by wildlife, climate (decadal scale), and canopy density. Feedbacks: Woody species dominate the ecological site, shading herbaceous species. As herbaceous species are outcompeted for resources, fire frequency decreases. Nutrient and water cycling are controlled by woody species.

Characteristics and indicators. The Encroached State consists of many woody species, especially eastern redcedar, where there is significant canopy closure. Time and fire frequency determine the community phases and species abundance and variation. As the woody canopy increases the hydrology of the site is altered. The increased canopy intercepts most of the precipitation. Understory species have less available water for growth and must compete with an extensive overstory root system.

Dominant plant species

- eastern redcedar (Juniperus virginiana), tree
- oak (Quercus), tree
- hybrid hickory (Carya), tree
- beech (Fagus), tree

State 3 Pasture

The Pasture State is characterized by the dominance of improved forage species. The quality and quantity of forb, grass, and legume species within this state will depend on the level of management inputs including seeding, weed management, and land uses. Species of both warm-season and cool-season grasses are feasible for these sites. Drivers: Mechanical soil disturbance and seed planting, climate (decadal scale), seed dispersal, and wildlife or livestock grazing or browsing. Feedbacks: Land managers use mechanical and chemical equipment to increase forage. Inputs of fertilizer and brush management are required to maintain high productivity. Wildlife and livestock grazing and browsing decrease the amount of available forage.

Characteristics and indicators. The Pasture State consists of species that are grown for specific management goals, mainly livestock grazing. Common pasture species include buffalograss, western wheatgrass, little bluestem, sideoats grama, Bermudagrass, and bahiagrass. Quality and quantity of forb, grass, and legume species within this state depend on the level of management inputs (seeding, weed management, and land uses). Species of both warm-season and cool-season grasses are feasible for these sites.

Dominant plant species

- Bermudagrass (Cynodon dactylon), grass
- red clover (Trifolium pratense), grass

State 4 Plantation

The plantation state is characterized by the planting of merchantable trees species. The most common species for a plantation is loblolly pine. Community phases differ by tree type (softwood or hardwood) and the harvesting process. Drivers: Prescribed fires, pest management, vegetation management, canopy density. Feedbacks: Timber harvesting. Planted tree species dominate this ecological site, shading out other vegetation. Anthropogenic

management decreases competition with other species and assists in growth.

Characteristics and indicators. A plantation state consists of tree species that are planted and managed to maximize the production of merchantable timber. The most common plantation species is loblolly pine, followed by hardwood trees. Community phases differ by tree type (softwood or hardwood), timber harvest method, management, and reforesting practices.

Dominant plant species

- loblolly pine (*Pinus taeda*), tree
- oak (Quercus), tree

Transition T1C State 1 to 2

Trigger: The absence of fire allows woody species to increase and outcompete herbaceous species for nutrients, water, and sunlight. Slow variables: Increased competition for sunlight, nutrients, and moisture resources. Increased overstory competition results in decreased vigor and reproductive capacity of herbaceous understory species. Thresholds: Nutrient cycles shift from grass-and-leaf dominance to leaf-and-needle dominance. Increased woody canopy cover alters hydrologic cycles, potentially increasing runoff, decreasing infiltration, and increasing precipitation interception to woody species.

Transition T1B State 1 to 3

Trigger: Mechanical and chemical woody vegetation suppression, tillage, and annual forage species introduction. Slow Variables: Increase production and management of forage species. Thresholds: Changes in soil properties, such as structure, organic matter, and nutrient cycling, as well as changes in type and frequency of disturbance.

Transition T1A State 1 to 4

Trigger: Native tree removal, mechanical and chemical woody vegetation suppression, introduce plantation tree species. Slow Variables: Increased production and management of plantation species. Thresholds: Changes in soil properties such as structure, organic matter, and nutrient cycling as well as changes in type and frequency of disturbance.

Transition T2A State 2 to 3

Trigger: Mechanical and chemical woody vegetation treatment, tillage, and forage species introduction. Slow Variables: Increase production and management of forage species. Thresholds: Changes in soil properties, such as structure, organic matter, and nutrient cycling, as well as changes in type and frequency of disturbance.

Transition T2B State 2 to 4

Trigger: Native tree removal, mechanical and chemical woody vegetation suppression, introduce plantation tree species. Slow Variables: Increased production and management of plantation species. Thresholds: Changes in soil properties such as structure, organic matter, and nutrient cycling as well as changes in type and frequency of disturbance.

Transition T3B State 3 to 2

Triggers: Lack of management or abandonment. Slow Variables: Increase in the establishment and size of woody species. Thresholds: Woody species dominate ecological processes. This reduces vigor and reproduction of understory species due to shading and increased competition for soil moisture, nutrients, and sunlight.

Transition T3A State 3 to 4

Trigger: Forage species removal and suppression, mechanical and chemical woody vegetation suppression, introduce and manage plantation tree species. Slow Variables: Increased production and management of plantation species. Thresholds: Changes in soil properties such as structure, organic matter, and nutrient cycling as well as changes in kind and frequency of disturbance.

Transition T4B State 4 to 2

Triggers: Lack of management or abandonment. Slow Variables: Increase in the establishment and size of woody species. Thresholds: Woody species dominant ecological processes resulting in reduced vigor and reproduction of herbaceous species in the understory due to shading and increased competition for soil moisture, nutrients, and sunlight.

Transition T4A State 4 to 3

Trigger: Tree removal, mechanical and chemical woody vegetation suppression, tillage, introduce annual or perennial forage species. Slow Variables: Increase production and management of forage species. Thresholds: Changes in soil properties such as structure, organic matter, and nutrient cycling as well as changes in type and frequency of disturbance.

Additional community tables

Animal community

Common wildlife species include whitetail deer, coyote, armadillo, beaver, raccoon, skunk, opossum, muskrat, cottontail, mourning dove, turkey, fox squirrel, and gray squirrel.

Hydrological functions

Following are the estimated withdrawals of freshwater by use in this MLRA:

Public supply—surface-water, 24.4%; ground-water, 5.1% Livestock—surface-water, 8.1%; ground-water, 0.6% Irrigation—surface-water, 0.0%; ground-water, 0.0% Other—surface-water, 61.8%; ground-water, 0.0%

The total withdrawals average 95 million gallons per day (360 million liters per day). About 6 percent is from groundwater sources, and 94 percent is from surface-water sources. The moderately high precipitation is adequate for crops and pasture. Large reservoirs on a few of the major streams are sources of municipal water and provide flood control and opportunities for recreation. The surface water is generally of good quality and is suitable for most uses. Shallow wells are the principal sources of water for domestic use. Deep wells are needed to obtain moderate to large quantities of ground water. Water from the Ozark aquifer system in the northern half of this area is suitable for drinking.

Recreational uses

Mountain biking, camping, fishing, hiking, horseback riding, hunting, mineral prospecting, nature viewing, offhighway vehicle riding, and water activities can all be enjoyed throughout this MLRA on public land where permitted and on private land where allowed. The Ozark National Forest is throughout this MLRA.

Wood products

Public and private timberland comprise large areas throughout this MLRA. Loblolly pine is the most popular species

to harvest and produces products such as lumber, pulpwood, posts, and poles. Hardwood species are also harvested and used to produce lumber, flooring, and pulpwood.

Other products

Poultry production is a major industry throughout the MLRA. Small grains, soybeans, and hay are major crops.

References

- Angerer, J., W. Fox, and J. Wolfe. 2016. Land Degradation in Rangeland Ecosystems. Biological and Environmental hazards, Risks, and Disasters. Academic Press.
- Bailey, R.G. 1995. Description of the ecoregions of the United States.
- Cannon, J.B. and J.S. Brewer. 2013. Effects of Tornado Damage, Prescribed Fire, and Salvage Logging on Natural Oak Regeneration in a Xeric Southern USA Coastal Plain Oak and Pine Forest.
- Carey, J. 1992. Quercus stellata, Fire Effects Information System. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. Fire Sciences Laboratory.
- Clark, J.A. and K.R. Covey. 2012. Tree species richness and the logging of natural forests: A meta analysis. Forest Ecology and Management. Elsevier, Yale School of Forestry and Environmental Studies. 146–153.
- DeSantis, R.D., S.W. Hallgreen, and D.W. Stahle. 2010. Historic Fire Regime of an Upland Oak Forest in South Central North America. Fire Ecology. USDA Forest Service, Northern Research Station, Saint Paul, Minnesota.
- Eldredge, I. 1937. Forest Resources of Southern Arkansas. Southern Forest Experiment Station. US Forest Service.
- Engle, D. and T. Bidwell. 2001. The response of central North American prairies to seasonal fire. Range Management 54:2–10.

Engle, D.M. 2017. Fire in North American Tallgrass Prairies. Weed Technology 5:247–248.

- Gower, K., J. Fontaine, C. Birnbaum, and N. Enright. 2015. Sequential Disturbance Effects of Hailstorms and Fire on Vegetation in a Mediterranean-Type Ecosystem. Ecosystems 18:1121–1134.
- Guldin, J.M. and M.W. Fitzpatrick. 1991. Comparison of Log Quality from Even-Aged and Uneven-Aged Loblolly Pine Stands in South Arkansas. Southern Journal of Applied Forestry 15:10–17.
- Guyette, R.P. and M. A. Spetich. 2003. Fire History of Oak-Pine Forests in the Lower Boston Mountains, Arkansas, USA. Forest Ecology and Management. Elsevier. 463–474.
- Guyette, R.P., M.A. Spetich, and M.C. Stambaugh. 2006. Historic fire regime dynamics and forcing factors in the Boston Mountains, Arkansas, USA. Forest Ecology and Management 234:293–304.

Hallgren, S.W., DeSantis. R. D., and J.A. Burton. 2012. Fire and vegetation Dynamics in the Cross Timbers Forests

of South-Central North America. Proceedings of the 4th Fire in Eastern Oak Forests Conference. USDA Forest Service General Techincal Report NRS-P-102, Springfield, Missouri. 52–66.

- Heikens, A. 2007. Glade Communities of the Ozark Plateaus Province. Pages 220–230 in Savannas, Barrens, and Rock Outcrop Plant Communities of North America.
- Hiers, K., R. Wyatt, and R. Mitchell. 2000. The effects of fire regime on legume reproduction in longleaf pine savannas: is a season selective?. Oecologia 125:521–530.
- Jenks, J.A., Leslie, R.L. Lochmiller, M.A. Melchiors, and McCollum. 1996. Competition in sympatric white-tailed deer and cattle populations in southern pine forests of Oklahoma and Arkansas, USA. Acta Theriologica 41:287–306.
- Klos, R.J. and G.G. Wang. 2009. Drought impact on forest growth and mortality in the southeast USA: an analysis using Forest Health and Monitoring data. Ecological Applications 19:699–708.
- Kohl, M., P. Krausman, K. Kunkel, and D. Williams. 2013. Bison Versus Cattle: Are They Ecologically Synonymous. Rangeland Ecology and Management 66:721–731.
- Linzon, S.N. 1962. Hail Damage to White Pine and Other Trees. The Forestry Chronicle. Canadian Institute of Forestry.
- Liu, C., J. Glitzenstein, P. Harcombe, and R. Knox. 1997. Tornado and fire effects on tree species composition in a savanna in the Big Thicket National Preserve, southeast Texas, USA. Forest Ecology and Management 91:279– 289.
- Owens, D. 2005. First report of a geological reconnaissance of the northern counties of Arkansas, made during the years 1857 and 1858. Arkansas Geological Survey.
- Siemann, E., J.A. Carrillo, C.A. Gabler, R. Zipp, and W.E. Rogers. 2009. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Forest Ecology and Management. Elsevier. 546–553.
- Smith, C. 1940. The Effects of Overgrazing and Erosion Upon the Biota of the Mixed-Grass Prairie of Oklahoma. Ecology. Wiley. 381–397.
- Spetich, M. and H. He. 2008. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes. Forest Ecology and Management 254:454–462.
- Varner, J.M., D.R. Gordon, F.E. Putz, and J.K. Hiers. 2005. Restoring Fire to Long-Unburned Pinus palustris Ecosystems: Novel Fire Effects and Consequences for Long-Unburned Ecosystems. Restoration Ecology 13:536–544.
- Warrillow, M. and P. Mou. 1999. Ice Storm Damage to Forest Tree Species in the Ridge and Valley Region of Southwestern Virginia. The Journal of the Torrey Botanical Society. Torrey Botanical Society. 147–158.

National Health and Environmental Effects. Research Laboratory, Corvallis, Oregon.

- Zhang, H. 2017. Interpreting Soil Salinity Analysis. Oklahoma Cooperative Extension Service Fact Sheet. Oklahoma State University.
- Zou, C., D. Twidwell, and C. Bielski. 2018. Impact of Eastern Redcedar Proliferation on Water Resources in the Great Plains USA- Current State of Knowledge.

Other references

Arkansas Soil Survey Ouachita National Forest Arkansas State Parks The Nature Conservancy US Fish and Wildlife Service Encyclopedia of Arkansas United States Forest Service Southern Research Station NatureServe Oklahoma Water Resource Board National Centers For Environmental Information University of Arkansas Oklahoma State University Arkansas Department of Forestry Oklahoma Department of Forestry

Contributors

Trevor Crandall, Ecological Site Specialist

Approval

Bryan Christensen, 9/22/2023

Acknowledgments

Larry Gray Elizabeth Gray Erin Hourihan

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	04/28/2024
Approved by	Bryan Christensen
Approval date	

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: