

Ecological site F120AY018KY Riverbank Loamy Alluvium

Accessed: 07/17/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 120A–Kentucky and Indiana Sandstone and Shale Hills and Valleys, Southern Part

120A—Kentucky and Indiana Sandstone and Shale Hills and Valleys, Southern Part

This area is primarily in Kentucky (83 percent) and Illinois (17 percent). A very small part is in Indiana. The area makes up about 8,905 square miles.

Physiography:

This area is in the Highland Rim Section of the Interior Low Plateaus Province of the Interior Plains. Tributaries of the Ohio River dissect the nearly level to very steep uplands. The major streams and rivers have well defined valleys with broad flood plains and numerous stream terraces. The flood plains along the smaller streams are narrow. Elevation ranges from 345 feet (105 meters) on the flood plain along the Ohio River to about 950 feet (290 meters) on the highest ridges. Local relief varies widely within the area.

Soils:

Most of the soils are Udalfs. Most of the soils have a mesic soil temperature regime, a udic soil moisture regime, and mixed mineralogy. The soils in the area formed in loess or in sandstone, shale, siltstone, or limestone residuum. Fragiudalfs (Hosmer, Loring, and Zanesville series) and Fraglossudalfs (Sadler and Grenada series), which have a fragipan, and Hapludalfs (Wellston and Frondorf series) are the dominant soils on ridgetops and side slopes.

Fragiudults (Tilsit series) and Hapludults (Gilpin and Shelocta series) are in the northern part of the area. Hapludolls (Huntington series), Eutrudepts (Nolin, Lindside, and Chagrin series), and Endoaquepts (Melvin and Newark series) are loamy soils on flood plains along the major streams. Endoaquepts and Epiaqualfs (Karnak and McGary series) are clayey soils in slackwater areas along the major rivers. Dystrudepts (Cuba and Steff series), Eutrudepts (Haymond and Wilbur series), Fluvaquents (Wakeland series), and Endoaquepts (Stendal series) are loamy soils on flood plains of local origin. Hapludalfs (Wheeling and Elk series) and Fragiudalfs (Otwood and Lawrence series) are loamy soils on terraces along the major streams.

Classification relationships

Riparian Forest (Kentucky State Nature Preserves Commission, Natural Communities of Kentucky, Evans, Hines, Yahn, 2009)

Ecological site concept

The communities described in this provisional document reflect plant communities that are likely to be found on these soils and have not been field verified. This PES describes hypotheses based on available data of many different scales and sources and has not been developed utilizing site-specific ecological field monitoring. This PES does not encompass the entire complexity or diversity of these sites. Field studies would be required to develop a comprehensive and science-based restoration plan for these sites.

State 1, Phase 1.1: Forestland. Plant species dominant:

1.1 American sycamore (*Platanus occidentalis*) – eastern cottonwood (*Populus deltoides*) / northern spicebush (*Lindera benzoin*) – paw paw (*Asimina triloba*) / giant cane (*Arundinaria gigantea*)

State 2, Phase 2.1: Pastureland. Plant species dominant: *Schedonorus arundinaceus* (tall fescue). Species present are dependent upon seeding and management.

State: 3. Phase 3.1: Transitional (Abandoned Field) Plant species dominant:

3.1 maples (Acer spp.) – tuliptree (*Liriodendron tulipifera*) / berries (Rubus spp.) / fescue (*Schedonorus arundinaceus*)

This phase is best described as an old field habitat with a mixture of native and introduced grasses and a variety of native and non-native herbs, forbs, seedlings, and saplings. Drainage modifications may have been made to enhance agriculture, so natural water regimes often are altered on these sites. Tree seedlings and sapling may include maple, tulip poplar, ash, boxelder, cottonwood, and sycamore; however, species will depend on available seed sources and disturbance levels.

State 4, Phase 4.1: Abandoned Cropland Plant species dominant: henbit deadnettle (*Lamium amplexicaule*) – mouse-eared chickweed (Cerastium L.) Abandonment of cropland would result in many weed species taking over the site. Initially, annual weeds would be predominate followed by grasses, shrubs and pioneers trees.

State 5, Phase 5.1: Cropland.

Plant species dominants: dependent upon seeding and management. Most common crops are corn and soybeans.

Restoration of states 2-5 to the reference community would require long-term, intensive management inputs.

Table 1. Dominant plant species

Tree	(1) Platanus occidentalis(2) Populus deltoides
Shrub	(1) Lindera benzoin (2) Asimina triloba
Herbaceous	(1) Arundinaria gigantea

Physiographic features

This initial grouping is very large and includes mapunits of over a dozen soil series found along streams and rivers in MLRA 120A.

Field work is required to further refine this grouping. Likely splits will be made in the future based on drainage, AWC, water table depth, flooding, ponding or any combination of these characteristics.

Landforms	(1) Flood plain(2) Stream terrace
Flooding duration	Brief (2 to 7 days) to long (7 to 30 days)
Flooding frequency	None to frequent
Ponding duration	Brief (2 to 7 days) to long (7 to 30 days)
Ponding frequency	None to frequent
Elevation	320–450 ft
Slope	0–35%
Ponding depth	0–12 in
Water table depth	19–60 in
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

MLRA climate summary: The average annual precipitation in most of this area is 45 to 54 inches (1,145 to 1,370 millimeters). About 60 percent of the precipitation falls during the freeze-free period. Most of the rainfall occurs as high-intensity, convective thunderstorms in summer. Snowfall is common in winter. The average annual temperature is 55 to 58 degrees F (13 to 14 degrees C). The freeze-free period averages 210 days and ranges from 190 to 230 days. The longer freeze-free periods occur along the Ohio River. From: Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin (U.S. Department of Agriculture Handbook 296, 2006)

 Table 3. Representative climatic features

Frost-free period (average)	174 days
Freeze-free period (average)	198 days
Precipitation total (average)	49 in

Climate stations used

- (1) DIXON SPRINGS AG CTR [USC00112353], Golconda, IL
- (2) HENDERSON 8 SSW [USC00153762], Henderson, KY
- (3) OWENSBORO 1 W [USC00156091], Owensboro, KY
- (4) LEITCHFIELD 2 N [USC00154703], Leitchfield, KY

Influencing water features

Soil features

This initial grouping is very large and includes mapunits of over a dozen soil series found along streams and rivers in MLRA 120A.

Field work is required to further refine this grouping. Likely splits will be made in the future based on drainage, AWC, water table depth, flooding, ponding or any combination of these characteristics.

In many cases, species composition may be similar with the differences in productivity.

Surface texture	(1) Sandy loam (2) Loamy sand
Family particle size	(1) Sandy
Drainage class	Poorly drained to excessively drained
Permeability class	Moderately slow to rapid
Soil depth	60–80 in
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	3–11.6 in
Subsurface fragment volume <=3" (Depth not specified)	0–10%
Subsurface fragment volume >3" (Depth not specified)	0–2%

Table 4. Representative soil features

Ecological dynamics

The communities described in this provisional document reflect plant communities that are likely to be found on these soils and have not been field verified. This PES describes hypotheses based on available data of many different scales and sources and has not been developed utilizing site-specific ecological field monitoring. This PES does not encompass the entire complexity or diversity of these sites. Field studies would be required to develop a comprehensive and science-based restoration plan for these sites.

State 1, Phase 1.1: Forestland. Plant species dominant:

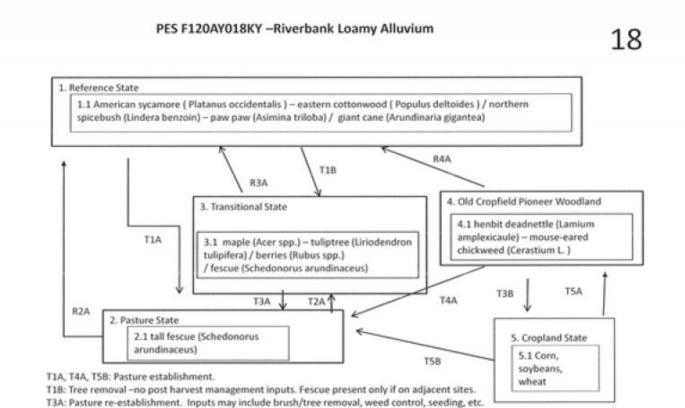
1.1 American sycamore (*Platanus occidentalis*) – eastern cottonwood (*Populus deltoides*) / northern spicebush (*Lindera benzoin*) – paw paw (*Asimina triloba*) / giant cane (*Arundinaria gigantea*)

State 2, Phase 2.1: Pastureland. Plant species dominant: *Schedonorus arundinaceus* (tall fescue). Species present are dependent upon seeding and management.

State: 3. Phase 3.1: Transitional (Abandoned Field) Plant species dominant:

3.1 maples (Acer spp.) – tuliptree (*Liriodendron tulipifera*) / berries (Rubus spp.) / fescue (*Schedonorus arundinaceus*)

This phase is best described as an old field habitat with a mixture of native and introduced grasses and a variety of native and non-native herbs, forbs, seedlings, and saplings. Drainage modifications may have been made to


enhance agriculture, so natural water regimes often are altered on these sites. Tree seedlings and sapling may include maple, tulip poplar, ash, boxelder, cottonwood, and sycamore; however, species will depend on available seed sources and disturbance levels.

State 4, Phase 4.1: Abandoned Cropland Plant species dominant: henbit deadnettle (*Lamium amplexicaule*) – mouse-eared chickweed (Cerastium L.) Abandonment of cropland would result in many weed species taking over the site. Initially, annual weeds would be predominate followed by grasses, shrubs and pioneers trees.

State 5, Phase 5.1: Cropland. Plant species dominants: dependent upon seeding and management. Most common crops are corn and soybeans.

Restoration of states 2-5 to the reference community would require long-term, intensive management inputs.

State and transition model

T3B: Cropland re-establishment. Inputs may include brush removal, weed control, seeding, etc.

T2A, T5A: Natural transition in absence of management inputs.

R2A, R3A, R4A: Extensive and long-term forest management inputs required to successfully restore reference community.

Figure 6. 120A, Group 18

Contributors

Arends

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: