

Ecological site F134XY005AL Northern Wet Loess Interfluve - PROVISIONAL

Accessed: 05/19/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 134X–Southern Mississippi Valley Loess

The Southern Mississippi Valley Loess (MLRA 134) extends some 500 miles from the southern tip of Illinois to southern Louisiana. This MLRA occurs in Mississippi (39 percent), Tennessee (23 percent), Louisiana (15 percent), Arkansas (11 percent), Kentucky (9 percent), Missouri (2 percent), and Illinois (1 percent). It makes up about 26,520 square miles. Landscapes consist of highly dissected uplands, level to undulating plains, and broad terraces that are covered with a mantle of loess. The soils, mainly Alfisols, formed in the loess mantle. Stream systems of the MLRA typically originate as low-gradient drainageways in the upper reaches that broaden rapidly downstream to wide, level floodplains with highly meandering channels. Alluvial soils are predominantly silty where loess thickness of the uplands are deepest but grade to loamy textures in watersheds covered by thin loess. Underlying the loess mantle are Tertiary deposits of unconsolidated sand, silt, clay, gravel, and lignite. Crowley's Ridge, Macon Ridge, and Lafayette Loess Plains are discontinuous, erosional remnants that run north to south in southeastern Missouri - eastern Arkansas, northeastern Louisiana to over 600 feet on uplands in western Kentucky. The steep, dissected uplands are mainly in hardwood forests while less sloping areas are used for crop, pasture, and forage production (USDA, 2006).

This site occurs throughout the Loess Plains (EPA Level IV Ecoregion: 74b) from western Kentucky south to the Southern Rolling Plains (EPA Level IV Ecoregion: 74c) in southwestern Mississippi.

Classification relationships

All or portions of the geographic range of this site falls within a number of ecological/land classifications including: -NRCS Major Land Resource Area (MLRA) 134 – Southern Mississippi Valley Loess

-Environmental Protection Agency's Level IV Ecoregion: Loess Plains, 74b (Griffith et al., 1998; Woods et al., 2002; Chapman et al., 2004)

-231H - Coastal Plains-Loess section of the USDA Forest Service Ecological Subregion (McNab et al., 2005)

-LANDFIRE Biophysical Setting 4713260 and NatureServe Ecological System CES203.479 South – Central Interior / Upper Coastal Plain Flatwoods (LANDFIRE, 2009; NatureServe, 2009)

-LANDFIRE Biophysical Setting 4713270 and NatureServe Ecological System CES203.479 South – Central Interior / Upper Coastal Plain Wet Flatwoods (LANDFIRE, 2009; NatureServe, 2009)

-Xerohydric Flatwoods – Kentucky State Nature Preserves Commission (Evans et al., 2009)

-Western Mesophytic Forest Region - Mississippi Embayment Section (Braun, 1950)

Ecological site concept

The Northern Wet Loess Interfluve is characterized by very deep, poorly drained soils that formed in thick loess or silty materials. This site occurs on broad, nearly level upland interfluves and divides of the Loess Plains and includes such widely varying physiographic features and landforms as upland depressions, headslopes (or drainheads), and flats on broad divides. Slope gradients range from 0 to 3 percent but are more often 0 to 2 percent. A seasonally high or perched water table at or near the surface generally occurs from winter to mid-spring,

which can become very dry to xeric during drier times of the year. Natural vegetation of the site varies by geomorphic feature. Ponding of upland depressions is generally short-lived, which contributes to the presence of species frequently found in both lowland and upland environments. Representative species may include overcup, white, cherrybark, pin, willow, and water oaks in addition to other hardwoods such as red maple, elm, hickory, and sweetgum. Vegetation of both headslopes and flats are somewhat similar in that upland oaks and hickory dominate. The broad, upland flats often resemble or possess characteristics that are suggestive of flatwoods; they have a relatively open understory and support droughty woodland species such as post, southern red, cherrybark, black, and white oaks. Shortleaf pine may become an additional community component farther south.

Associated sites

F134XY004AL Northern Moderately Wet Loess Interfluve - PROVISIONAL

Similar sites

F134XY010AL	Northern Wet Loess Terrace - PROVISIONAL
F134XY202AL	Western Wet Loess Terrace - PROVISIONAL

Table 1. Dominant plant species

Tree	(1) Quercus stellata (2) Quercus pagoda	
Shrub	(1) llex decidua	
Herbaceous	Not specified	

Physiographic features

The Northern Wet Loess Interfluve is broadly distributed across the largest physiographic subsection or ecoregion of the MLRA, the Loess Plains. West to east, this ecological site extends from the heart of the plains into portions of the Southeastern Plains (EPA Level III Ecoregion: 65). North to south, the site extends from the plains in western Kentucky to the border of the Southern Rolling Plains in southwestern Mississippi. The latter forms the southern-most boundary of the site due to warmer average annual air temperatures, greater annual rainfall, and a transition to slightly warmer soils (Chapman et al., 2004).

Characteristics of this region generally include undulating uplands, gently rolling hills, and irregular plains. Topographic relief of the Loess Plains is generally low, averaging about 30 to 70 feet. Upland slopes typically range from 0 to 20 percent with 1 to 8 percent being dominant. Elevations in the range of 300 to 400 feet are commonplace to the south but increase to nearly 600 feet in the north. In portions of western Kentucky and Tennessee, the undulating pattern of the plains is interrupted by dissected landscapes. Such areas tend to be hillier with steeper slopes and greater relief and appear to be concentrated along the borders of broader valleys and floodplains. As the plains continue eastward, starkness of the terrain becomes even more pronounced, which signals the transition of the Loess Plains to the thin loess-capped ridges, hills, and plateaus along the western edge of the Southeastern Plains. To the south, through much of Mississippi, the Loess Plains consists of a very thin east – west belt, compressed between the dissected Loess Hills and Mississippi Alluvial Plain to the west and the Coastal Plain to the east. The convergence of such contrasting ecoregions contribute to a very complex pattern of soils, landforms, and vegetation communities.

This ecological site primarily occurs on broad, level interfluves or divides and the heads of drains. Several local examples in western Kentucky and Tennessee occur in areas that are, physiographically, plateau-like. The site includes shallow upland depressions, headslopes (nearly level drainheads), and flats on broad divides.

All aspects are well represented and included in this ecological site.

Table 2. Representative physiographic features

Landforms	(1) Interfluve(2) Depression(3) Flat
Flooding duration	Brief (2 to 7 days)
Flooding frequency	None to occasional
Ponding duration	Brief (2 to 7 days) to long (7 to 30 days)
Ponding frequency	None to frequent
Elevation	70–183 m
Slope	0–2%
Ponding depth	0–76 cm
Water table depth	0–41 cm
Aspect	Aspect is not a significant factor

Climatic features

This site falls under the Humid Subtropical Climate Classification (Koppen System). The average annual precipitation for this site from 1980 through 2010 is 56 inches and ranges from 53 in the north to 58 inches in the south. Maximum precipitation occurs in winter and spring and precipitation decreases gradually throughout the summer, except for a moderate increase in midsummer. Rainfall often occurs as high-intensity, convective thunderstorms during warmer periods but moderate-intensity frontal systems can produce large amounts of rainfall during winter, especially in the southern part of the area. Snowfall generally occurs in the north during most years. However, accumulations are generally less than 12 inches and typically melt within 3 to 5 days. South of Memphis, winter precipitation sometimes occurs as freezing rain and sleet. The average annual temperature is 60 degrees F and ranges from 58 in the north to 252 days in the south. The freeze-free period averages 222 days and ranges from 206 days in the north to 252 days in the south. The frost free period averages 197 days and ranges from 191 in the north to 224 days in the south.

The broad geographic distribution of this site north to south naturally includes much climatic variability with areas farther south having a longer growing season and increased precipitation. These climatic factors likely lead to important differences in overall plant productivity and key vegetation components between the southern and northern portions of this site. As future work proceeds, the current distribution of this site will likely be revised with a "central" site interjected between the northern and southern extremes of this MLRA.

Frost-free period (average)	197 days
Freeze-free period (average)	222 days
Precipitation total (average)	1,422 mm

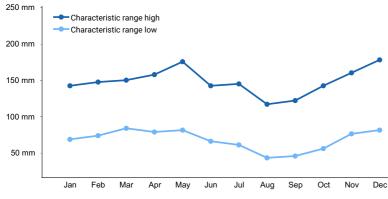


Figure 1. Monthly precipitation range

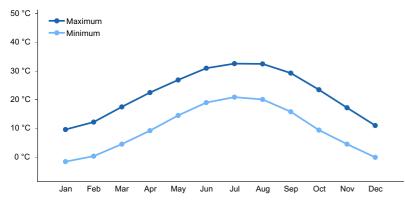


Figure 2. Monthly average minimum and maximum temperature

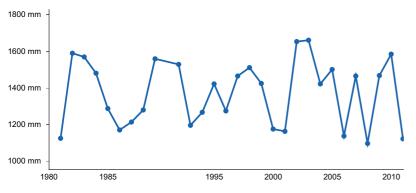


Figure 3. Annual precipitation pattern

Climate stations used

- (1) SENATOBIA [USC00227921], Coldwater, MS
- (2) COLLIERVILLE [USC00401950], Collierville, TN
- (3) NEWBERN [USC00406471], Newbern, TN
- (4) GILBERTSVILLE KY DAM [USC00153223], Gilbertsville, KY
- (5) BATESVILLE 2 SW [USC00220488], Batesville, MS
- (6) GRENADA [USC00223645], Grenada, MS
- (7) HOLLY SPRINGS 4 N [USC00224173], Holly Springs, MS
- (8) LEXINGTON [USC00225062], Lexington, MS
- (9) VICKSBURG MILITARY PK [USC00229216], Vicksburg, MS
- (10) YAZOO CITY 5 NNE [USC00229860], Yazoo City, MS
- (11) MILAN EXP STN [USC00406012], Milan, TN
- (12) PADUCAH [USW00003816], West Paducah, KY
- (13) JACKSON INTL AP [USW00003940], Pearl, MS
- (14) BARDWELL 2 E [USC00150402], Bardwell, KY
- (15) LOVELACEVILLE [USC00154967], Paducah, KY
- (16) MURRAY [USC00155694], Murray, KY
- (17) CANTON 4N [USC00221389], Canton, MS
- (18) OAKLEY EXP STN [USC00226476], Raymond, MS
- (19) BOLIVAR WTR WKS [USC00400876], Bolivar, TN
- (20) DRESDEN [USC00402600], Dresden, TN
- (21) UNION CITY [USC00409219], Union City, TN
- (22) BROOKPORT DAM 52 [USC00110993], Paducah, IL
- (23) COVINGTON 3 SW [USC00402108], Covington, TN

Influencing water features

The poorly drained soils of this site are noted for supporting a high water table (perched) during periods of high rainfall and low evapotranspiration, typically from winter to spring. With the exception of some headslopes and upland drains, wetness of this site is primarily influenced by precipitation. Highly localized surfacing of groundwater may influence the site along a very narrow corridor of some drainheads, but such occurrences generally do not have

a demonstrable influence on the overall vegetation of this site. Instances where water has the greatest influence are closed and open (or flow-through) depressions that seasonally pond and in areas where the site is positioned adjacent to small, upland drainageways. Wetland or hydrophytic vegetation may occur in closed and some flow-through depressions. Vegetation of the upland flats consists predominantly of upland species, although some facultative wetland species may occur.

Soil features

Please note that the soils listed in this section of the description may not be all inclusive. There may be additional soils that fit the site's concepts. Additionally, the soils that provisionally form the concepts of this site may occur elsewhere, either within or outside of the MLRA and may or "may not" have the same geomorphic characteristics or support similar vegetation. Some soil map units and soil series included in this "provisional" ecological site were used as a "best fit" for a particular soil – landform catena during a specific era of soil mapping, regardless of the origin of parent material or the location of MLRA boundaries. Therefore, the listed soils may not be typical for MLRA 134 or a specific location, and the associated soil map units may warrant further investigation in a joint ecological site inventory – soil survey project. When utilizing this provisional description, the user is encouraged to verify that the area of interest meets the appropriate ecological site concepts by reviewing the soils, landform, vegetation, and physical location. If the site concepts do not match the attributes of the area of interest, please review the Similar or Associated Sites listed in the Supporting Information section of this description to determine if another site may be a better fit for your area of interest.

The soils of this site are very deep, poorly drained, and have a perched water table at or near the surface during wet periods of the year, generally winter into spring. They formed in a mantle of loess, or "water reworked" loess, on broad, nearly level upland interfluves where they occur as depressions, headslopes, and flats. Dominant slope gradient is between 0 and 2 percent but may range to a high of 3 percent. Permeability is slow and runoff is negligible to slow with some areas receiving overland flow from adjacent sites.

Principal soils of this site include Routon (Fine-silty, mixed, active, thermic Typic Epiaqualfs), Adaton (Fine-silty, mixed, active, thermic Typic Endoaqualfs), and Henry (Coarse-silty, mixed, active, thermic Typic Fragiaqualfs) soil series. Routon soils are characteristically episaturated; saturation occurs in the layers above 54 inches. Adaton soils are recognized as being endosaturated, but a seasonally high water table may also be influenced by an argillic horizon consisting of 20 to 35 percent clay in the upper 20 inches. Henry soils have a slowly permeable fragipan in the subsoil. Depth to the fragipan ranges from 20 to 36 inches (USDA, 2016).

Surface texture	(1) Silt loam
Family particle size	(1) Loamy
Drainage class	Poorly drained
Permeability class	Slow to moderate
Soil depth	20–71 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	17.78–21.59 cm
Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	5–5.6

Table 4. Representative soil features

Subsurface fragment volume <=3" (Depth not specified)	1%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

This ecological site is essentially the upland counterpart to the Northern Wet Loess Terrace and its embedded associate, Northern Ponded Loess Terrace. The major difference is that there are less species having wetland affinities in the upland site. The upland systems tend to be drier and plant productivity is probably lower, overall. Still, there are similarities between the terrace and upland sites, which include poorly drained soils, the presence of local depressions, and co-occurrence of species found on both terraces and uplands.

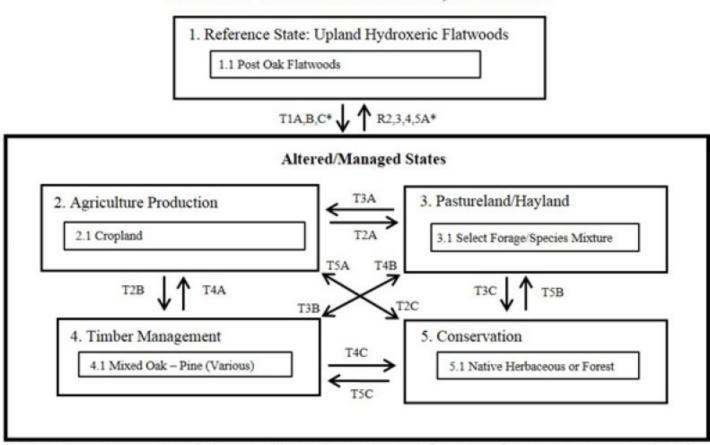
A key characteristic of this site is the propensity of these poorly drained soils to perch water during wetter times of the year. Poor surface runoff and slow permeability contributes to saturated conditions from winter through spring in most years. Ironically, this extreme wet condition through the first part of the year is reversed by mid- to late summer when evapotranspiration essentially removes moisture above the soils' perching layer, which leads to very droughty conditions during summer and fall. The alternating wet – dry pattern of this site characteristically occurs in other "flatwoods" communities in the eastern United States (see Taft et al., 1995; Fralish et al., 1999). This moisture regime is often referred to as "hydroxeric" (or xero-hydric, depending on preference).

The soils that define this site have been mapped on three important upland landforms or positions: headslopes (or drainheads), upland depressions, and broad, level to nearly level flats. There are a number of instances in the MLRA where the poorly drained soils of this site support the origins of first order streams (both intermittent and perennial). Many of these areas have been cleared and the originating streams channelized. However, those areas where vegetation is somewhat intact (often heavily cutover) have been found to support interesting conditions from a structural and compositional perspective.

Upland depressions of this site have also undergone many transformations that range from obliterated (erased from the landscape) to channelized and drained to well-defined, seasonally ponded concavities. Some existing sites exhibit flow-through hydrodynamics, and some are actually the heads of intermittent or perennial streams. Most depressions of this site are nearly circular and are positioned on broad flats within like soils, usually Routon soils in the north and Adaton and Henry soils to the south. There are a few conjectures over the origins of these "vernal pools" and some "old timers" refer to them as "buffalo wallows" insinuating that they were favored bison watering and wallowing holes. Most of these isolated depressions today exist as a perfect circle of trees within vast agriculture fields.

The third and equally significant landform associated with this site is the broad, "tableland-like" flats or flatwoods. So significant and recognizable were these plateau-like flats that Loughridge (1886) illustrated their occurrence and discussed them in a later volume (Loughridge, 1888). He mapped and addressed their distribution as a legitimate region, "Flatwoods" and gave them a species descriptor of "post oak Flatwoods." Loughridge described them as "crawfishy" and listed "...red and post oaks..." as the chief vegetation type. Similar to the preceding two landforms of this site, these flatwoods are reduced to a few small blocks or patches of woods. Most of their former distribution is in cropland.

As alluded to above, the predominant land use activity on this site today is agriculture production with principal crops being soybean, cotton, corn, and milo (USDA-NRCS, 2016). Depending on crop type, manipulation and management of surface water and drainage capabilities of a given site is generally implemented. A minor use on this site is reportedly pastureland or hayland with principal forage of bermudagrass, bahiagrass, and tall fescue. This site has some limitations for forest production, mainly due to seasonal wetness but also dryness during summer and fall. (Forest production is a very minor use on this site as the vast majority of the site's distribution is cropland. Therefore, forest or timber management as a state is "provisionally" represented in the accompanied State and Transition Model.) All uses on this site have limitations due to seasonal wetness, but forest productivity may have some limitations due to seasonal dryness, particularly on planted seedlings.


To date, no reference sites have been identified or located for any of the landforms that this site comprises. However, several locations that included all three landforms of this site have been examined, and reference conditions are projected based on those observations. In every situation, various impacts were noted, however a suite of species thought to have been representative of the historic community were observed. Based on location of this site near other fire-influenced systems (e.g., the Jackson Purchase prairies or "barrens"), the flatwoods of these "tablelands" were most certainly fire-influenced. The woodland character and dry association that still exists in small pockets lends to that hypothesis.

Following this narrative, a "provisional" state and transition model is provided that includes the "perceived" reference state and several alternative (or altered) vegetation states that have been observed and/or projected for the Northern Wet Loess Interfluves ecological site. This model is based on limited reconnaissance, literature, expert knowledge, and interpretations. Plant communities will differ across MLRA 134 due to natural variability in climate, soils, and physiography. Some of the presented alternate states may warrant removal as additional information is learned and/or becomes available. Depending on objectives, the reference plant community may not necessarily be the management goal.

The environmental and biological characteristics of this site are complex and dynamic. As such, the following diagram suggests pathways that the vegetation on this site might take, given that the modal concepts of climate and soils are met within an area of interest. Specific locations with unique soils and disturbance histories may have alternate pathways that are not represented in the model. This information is intended to show the possibilities within a given set of circumstances and represents the initial steps toward developing a defensible description and model. The model and associated information are subject to change as knowledge increases and new information is garnered. This is an iterative process. Most importantly, local and/or state professional guidance should always be sought before pursuing a treatment scenario.

Northern Wet Loess Interfluve, 134XY005

State and transition model

* = To reduce clutter and confusion, transition pathways (arrows) from the reference state are not indicated. Those particular pathways are addressed in the respective state and community sections.

Figure 5. STM - Northern Wet Loess Interfluve

Pathway	Practice
T1A, T3A, T4A, T5A	mechanical removal of vegetation; establish cultivation (State 2)
T1B, T2A, T4B, T5B	mechanical removal of vegetation; herbicide application; seedbed preparation; planting desired species at appropriate rate (State 3)
T1C, T2B, T3B, T5C	various approaches; includes uneven-age and even-age; goal of mixed oak or pine management; may consist of timber stand improvements; group selection; single tree harvest (State 4)
T2C, T3C, T4C	discontinuing cultivation/pastureland/timberland and establishing native grasses/forbs or managing for native woodland; includes "guided" natural succession and maintenance, periodic fire, select herbicide treatment (State 5)
R2A, R3A, R4A, R5A	natural succession over time; may require exotic plant control and reestablishment of missing species; NOTE: any former alteration to soil drainage MUST be restored before returning to true reference conditions (State 1)

Figure 6. Legend - Northern Wet Loess Interfluve

State 1 Upland Hydroxeric Flatwoods

Exemplary examples of the full range of plant communities and ecological processes that were once commonplace on this ecological site no longer exist. Vestiges of this once vast system are primarily relegated to abandoned woodlots that have undergone numerous impacts since settlement. Still, there appears to be a close correlation between the species reported in earlier state reports (e.g., Loughridge, 1888; Lowe, 1921) and more recent accounts of extant woodlots (Bryant, 1999). One major difference between the historic community and existing woodlands is the absence of fire, which is thought to have been an important disturbance factor (NatureServe, 2009). The one landform in which very little to no information has been found is the upland, seasonally ponded depressions of this site. We have information regarding these systems on terraces (see Northern Ponded Loess Terrace ecological site) but no information has been found regarding these loessal, vernal pools in the literature or from other investigators. They appear to have been largely overlooked. Reference conditions of this site are essentially based on rapid assessments and community projections. Classifying this system with a single plant association name is extremely difficult, if not impossible, due to the variability of species occurring on each of the different landforms associated with the site. Nonetheless, the flatwoods community phase has been selected to represent the range of species occurring on this site due to its aerial extent. Species considered important or restricted to a specific landform will be specifically addressed (e.g., upland depressions). As additional information becomes available, revisions to this site may warrant significant changes. At a minimum, a new site will be developed for areas to the south in Mississippi where loblolly and shortleaf pine enters the community as components. Of concern, portions of this site have been altered to facilitate rapid drainage (e.g., depressions and headslopes). Any attempt to reestablish perceived reference conditions of a stand or a local site must first restore the natural hydrology of that location, which may entail removing drainage structures. If not, management may improve stand structure and even composition to a degree, but the site, overall, will remain in an altered state relative to the perceived reference conditions, which includes a seasonal high water table. Retaining drainage structures will directly influence the types of vegetation that colonize the site, which may be entirely different from the natural vegetation associated with these poorly drained soils.

Community 1.1 Post Oak Flatwoods

This community phase represents the compositional and structural complexity of stands supporting perceived reference conditions. With no intact example of a pre-settlement community remaining, this phase is arbitrarily chosen to represent the range of conditions that exist. However, the community phase name is somewhat misleading because it does not adequately address the range of species or conditions that this site supports and represents. Post oak flatwoods are specific to the largest and most wide-ranging community-type on broad, level divides, but it doesn't take into account the mixed-oak characteristics of seasonally ponded depressions. The broad level flats are often dominated by post oak with associates of southern red oak, cherrybark oak, black oak, shagbark hickory, mockernut hickory, red maple, and winged elm. In some slightly wetter localities, sweetgum is a component in addition to Viola sp., greenbrier, jewelweed and sedges. Farkleberry is often an important understory component of the system. Headslopes were found to support the preceding canopy species in addition to willow oak, shellbark hickory, sweetgum, black cherry, and persimmon. Understory species of headslopes may consist of possumhaw, blackberry, black willow, American hornbeam, roundleaf greenbrier, slender woodoats, river oats, rosette grass, redtop panic-grass, common rush, and even smallspike false nettle. This preceding list of herbaceous species

certainly suggests hydric influences. These influences are most pronounced near the origin of stream systems. Isolated upland depressions include both closed and flow-through systems. Species characteristic of these sites include taxa typically associated with lowland and upland systems. Similar to the Northern Ponded Loess Terrace site, both size and depth of upland depressions may dictate composition of local sites. Species occurring within upland depressions may consist of willow oak, pin oak, sweetgum, green ash, American elm, black willow, sugarberry, overcup oak (in deeper sites), river birch, hickory, red maple, and even post oak, white oak, black cherry, and dogwood along the wetted perimeter. Determining which species is an artifact of former disturbances and which are true historic associates is difficult to assess and determine at this juncture. More work is needed. Historically, the various landforms associated with this site may have been open, far more than they are today. Fire was very likely a common and important influence on these systems (LANDFIRE, 2009; NatureServe, 2009), even in upland depressions.

State 2 Agriculture Production

Agriculture production is the dominant land use activity on this site, today, although production is somewhat limited due to seasonal wetness. Many areas in production have some form of drainage structures established due to seasonal saturation of the soil surface.

Community 2.1 Cropland

Crops may include soybean, corn, milo, and cotton.

State 3 Pastureland / Hayland

This state is representative of sites that have been converted to and maintained in pasture and forage cropland, typically a grass – legume mixture. For pastureland, planning or prescribing the intensity, frequency, timing, and duration of grazing can help maintain desirable forage mixtures at sufficient density and vigor (USDA-NRCS, 2010; Green et al., 2006). Overgrazed pastures can lead to soil compaction and numerous bare spots, which may then become focal points of colonization by undesirable plants or weeds. Soils exhibiting the core concepts of this site have a pronounced period of wetness followed by droughty conditions. Limitations may pertain mainly to periods of extreme wetness. Planning or prescribing the intensity, frequency, timing, and duration of grazing can help maintain desirable forage mixtures at sufficient density and vigor (USDA-NRCS, 2010; Green et al., 2006). Because of the limitations of this site, grazing may be limited to small intervals within the appropriate season(s). It is strongly advised that consultation with State Grazing Land Specialists and District Conservationists at local NRCS Service Centers be sought when assistance is needed in developing management recommendations or prescribed grazing practices on this site.

Community 3.1 Select Forage/Species Mixture

This community phase represents commonly planted forage species on pasturelands and haylands. The suite of plants established on any given site may vary considerably depending upon purpose, management goals, usage, and soils. The limitations of this site may preclude some of the commonly planted mixtures. However, there is some indication that tall fescue, common bermudagrass, bahiagrass, and white clover may be adapted to this site (USDA-NRCS, 2006b). Should active management (and grazing) of the pastureland be halted, this phase will transition to "old field" conditions, which is the transitional period between a predominantly open, herbaceous field and the brushy stage of a newly initiated stand of trees.

State 4 Timber Management

This state represents a broad range of management objectives, options, and stand conditions including woodlots allowed to grow or revert naturally; repeated single-tree harvests (often high-graded); carefully prescribed treatments; and conversion to a monoculture or single-species stand. Various management or silvicultural methods

can lead to very different structural and compositional results. For prescribed management options, methods are diverse, which include even-aged (e.g., clearcut and shelterwood) and uneven-aged (single tree, diameter-limit, basal area, group selection, etc.) approaches. Included within these approaches is an option to use disturbance mechanisms (e.g., fire, TSI, etc.) to reduce competition and achieve maximum growth potential of the desired species. Inherently, these various approaches result in different community or "management phases" and possibly alternate states. The decision to represent these varying approaches and management results into a single state and phase at this time hinges on the need for additional information in order to formulate definitive pathways, management actions, and community responses. Forthcoming inventories of this site will provide more detail on this state and associated management phases; the latter often rendering the soil very hard and compact. These collective impacts could lead to high seedling mortality and/or low productivity of individual trees. Implementing this state or management option on this site should be carefully reviewed and considered.

Community 4.1 Mixed Oak – Pine (Various)

Some of the most desirable timber on this site consists of a few species of oak. However, productivity is likely low, and there are severe limitations. Depending on the desired end product, management activities will differ. Management for oak dominant stands may be achieved by shelterwood and/or seed tree approaches. Managing for other hardwoods, and pine to the south, may only require timber stand improvement methods or artificial regeneration where other hardwoods predominate. Pine management should be relegated to southern portions of this site. Of caution, properties of these soils may limit the types of oaks, and other species, that will survive and produce any returns. Finding the appropriate approach for a given stand and environment necessitates close consultation with trained, experienced, and knowledgeable forestry professionals. It is strongly urged and advised that professional guidance be secured and a well-designed silvicultural plan developed in advance of any work conducted.

State 5 Conservation

This alternative state is included to represent the range or breadth of conservation actions that may be implemented and established should other land uses be discontinued within a given location. Several actions may be chosen including the standard of establishing: native warm season grasses; suitable forbs for pollinators; select native trees to manage for forest or woodland conditions. If at all possible, the herbaceous species established should be derived from the "wild types" (genetic stock) from the Loess Plains or from adjoining ecoregions. This action would help preserve the unique genetic material from the area and would help to reintroduce the native herbaceous taxa back into a portion of their former range.

Community 5.1 Native Herbaceous or Woodland

This community phase represents the establishment of select native plants to meet conservation objectives on this site. As alluded to above, the best case scenario is the establishment of native species selected from the genetic stock of the Loess Plains or neighboring ecoregions. Herbaceous species suitable for establishing on this site include Indian grass, little bluestem, gama-grass, threeawn, wild oat grasses, panic grass, blazing star, evening-primrose, asters, sunflowers, goldenrod, tickseed, coneflowers, rattlesnake master, mountain mints, agave, milkweeds, sedges, among many others. Additional study is needed on this site before a complete set of plants can be generated. Key to the perpetuation and maintenance of this system is frequent fire, generally on a 1 to 3 year return interval (judgement based on early accounts of frequent burning; e.g., Loughridge, 1888).

Transition T1A State 1 to 2

Actions include mechanical removal of vegetation and stumps; preparation for and establishment of cultivation (State 2).

Transition T1B

State 1 to 3

This pathway represents an attempt to convert the woodland community to pasture or forage production. Actions include clearing, stump removal, seedbed preparation, and the establishment of desired plants (State 3).

Transition T1C State 1 to 4

This pathway consists of prescribed silvicultural activities specifically designed to meet stand compositional and production objectives (State 4).

Restoration pathway R2A State 2 to 1

This pathway represents natural succession back to perceived reference conditions. The period required for this transition to take place likely varies by location and is dependent upon local site conditions. In some cases, a return to the reference state may not be possible without considerable management effort. That effort may involve exotic species control, restoration of the natural hydrologic regime of a given locality, and the reestablishment of components considered characteristic of the reference state.

Transition T2A State 2 to 3

Seedbed preparation and establishment of desired forage/grassland mixture.

Transition T2B State 2 to 4

This pathway represents prescribed management strategies for transitioning former cropland and/or cutover woodland to one that meets timber stand composition and production objectives. However, there are significant timber management limitations due to seasonal wetness and dryness; the latter often rendering the soil very hard and compact. For enhanced oak production, actions may include artificial regeneration and reduction of oak competition. Depending on species, seedling mortality could be high on this site. The final option of this pathway is the establishment of a pine monoculture or plantation. Establishment of the latter should be limited to southern portions of this site.

Transition T2C State 2 to 5

This pathway represents the decision to discontinue cultivation/production and establish native grasses/forbs or trees on this site. This action also includes management activities to "guide" natural succession and conservation maintenance. Actions may include prescribed fire for maintaining and enhancing herbaceous establishment and herbicide treatments for controlling exotic species invasions and to ensure select tree establishment.

Restoration pathway R3A State 3 to 1

This pathway represents natural succession back to perceived reference conditions. The period required for this transition to take place likely varies by location and is dependent upon local site conditions. In some cases, a return to the reference state may not be possible without considerable management effort. That effort may involve exotic species control, restoration of the natural hydrologic regime of a given locality, and the reestablishment of components considered characteristic of the reference state.

Transition T3A State 3 to 2

Actions include removal of vegetation; herbicide treatment of residual plants; and preparation for cultivation.

Transition T3B State 3 to 4

This pathway represents natural succession of former pasture to non-managed "woods" or implementing prescribed management strategies for meeting timber stand composition and production objectives. However, there are significant timber management limitations due to seasonal wetness and dryness; the latter often rendering the soil very hard and compact. For enhanced oak production, actions may include artificial regeneration and reduction of oak competition. Depending on species, seedling mortality could be high on this site. The final option of this pathway is the establishment of a pine monoculture or plantation. Establishment of the latter should be limited to southern portions of this site.

Transition T3C State 3 to 5

This pathway represents the decision to discontinue grazing/non-native forage management and establish native grasses/forbs or trees on this site. This action also includes management activities to "guide" natural succession. Actions may include prescribed fire for maintaining and enhancing herbaceous establishment and herbicide treatments for controlling exotic species invasions and to ensure select tree establishment.

Restoration pathway R4A State 4 to 1

Natural succession over a period of time may transition a former timber-managed stand to one supporting reference conditions. Based on observations of some reference stands, a period greater than 50 years may be required, unless it was a former pine monoculture. Some question remains whether a return to reference conditions will occur in every situation, especially since some components may have been selectively culled from the stand. Management activities to aide recovery may include exotic species control and silvicultural treatment (State 1).

Transition T4A State 4 to 2

Actions include removal of vegetation; herbicide treatment of residual plants; and preparation for crop establishment.

Transition T4B State 4 to 3

Seedbed preparation and establishment of desired forage/grassland mixture.

Transition T4C State 4 to 5

This pathway represents the decision to discontinue timber management or forest cover and establish native grasses/forbs or woodland/savanna on this site. This decision also includes the implementation of management activities to "guide" natural succession and conservation end goals. Actions may include prescribed fire for maintaining and enhancing herbaceous establishment and herbicide treatments for controlling exotic species invasions.

Restoration pathway R5A State 5 to 1

This pathway represents natural succession back to perceived reference conditions. The period required for this transition to take place likely varies by location and is dependent upon local site conditions. In some cases, a return to the reference state may not be possible without considerable management effort. That effort may involve exotic species control, restoration of the natural hydrologic regime of a given locality, and the reestablishment of components considered characteristic of the reference state.

Transition T5A State 5 to 2

This pathway represents the discontinuation of conservation practices and a return to production.

Transition T5B State 5 to 3

This pathway represents the discontinuation of conservation practices and a return to pasture and/or hayland management entailing removal of vegetation, seedbed preparation, and establishment of desired forage/grassland mixture.

Transition T5C State 5 to 4

This pathway represents natural succession of former pasture to non-managed "woods" or implementing prescribed management strategies for meeting timber stand composition and production objectives. However, there are significant timber management limitations due to seasonal wetness and dryness; the latter often rendering the soil very hard and compact. For enhanced oak production, actions may include artificial regeneration and reduction of oak competition. Depending on species, seedling mortality could be high on this site. The final option of this pathway is the establishment of a pine monoculture or plantation. Establishment of the latter should be limited to southern portions of this site.

Additional community tables

Other references

Braun, E.L. 1950. Deciduous Forests of Eastern North America. Hafner Press, New York. 596 p.

Bryant, William S. 1999. Flatwoods of the Jackson Purchase Region, western Kentucky: Structure and Composition. In: Hamilton, Steven W., Edward W. Chester, David S. White and Mack T. Finley (eds.). Proceedings of the Eighth Symposium on the Natural History of the Lower Tennessee and Cumberland River Valleys. The Center for Field Biology, Austin Peay State University, Clarksville, TN.

Chapman, S.S, G.E. Griffith, J.M. Omernik, J.A. Comstock, M.C. Beiser, and D. Johnson. 2004. Ecoregions of Mississippi (color poster with map, descriptive text, summary tables, and photographs): Reston, Virginia, U.S. Geological Survey (map scale 1:1,000,000).

Evans, M., M. Hines, and B. Yahn. 2009. Natural communities of Kentucky 2009. Kentucky State Nature Preserves Commission, Frankfurt, KY.

Fralish, J.S., S.B. Franklin, and D.D. Close. 1999. Open woodland communities of southern Illinois, western Kentucky, and Middle Tennessee. In: Anderson, R.C., J.S. Fralish, and J.M. Baskin (eds.). Savannas, Barrens, and Rock Outcrop Plant Communities of North America. Cambridge University Press, New York. 470 p.

Green, Jonathan D., W.W. Witt, and J.R. Martin. 2006. Weed management in grass pastures, hayfields, and other farmstead sites. University of Kentucky Cooperative Extension Service, Publication AGR-172.

Griffith, G.E., J.M. Omernik, S. Azevedo. 1998. Ecoregions of Tennessee (color poster with map, descriptive text, summary tables, and photographs): Reston, VA., U.S. Geological Survey (map scale 1:1,000,000).

Hines, M. personal communication. Ecologist, Natural Heritage Program Manager, Kentucky State Nature Preserves Commission, Frankfurt, KY.

LANDFIRE. 2009. LANDFIRE Biophysical Setting Models. Biophysical Setting 46-47. (2009, February and March – last update). Homepage of the LANDFIRE Project, U.S. Department of Agriculture, Forest Service; U.S. Department of Interior, [Online]. Available: http://www.landfire.gov/index.php (Accessed: 1 July 2014).

Loughridge, R.N. 1888. Report on the Geological and Economic Features of the Jackson Purchase Region, Embracing the Counties of Ballard, Calloway, Fulton, Graves, Hickman, McCracken, and Marshall. Geologic Survey of Kentucky. Frankfort, KY.

Lowe, E.N. 1921. Plants of Mississippi. A list of flowering plants and ferns. Mississippi State Geological Survey. Bulletin No. 17. 259 p.

McNab, W.H.; Cleland, D.T.; Freeouf, J.A.; Keys, Jr., J.E.; Nowacki, G.J.; Carpenter, C.A., comps. 2005. Description of ecological subregions: sections of the conterminous United States [CD-ROM]. Washington, DC: U.S. Department of Agriculture, Forest Service. 80 p.

NatureServe. 2009. International Ecological Classification Standard: Terrestrial Ecological Classifications. NatureServe Central Databases. Arlington, VA, U.S.A. Data current as of 06 February 2009.

Rhodes, G.N., Jr., G.K. Breeden, G. Bates, and S. McElroy. 2005. Hay crop and pasture weed management. University of Tennessee, UT Extension, Publication PB 1521-10M-6/05 (Rev). Available: https://extension.tennessee.edu/washington/Documents/hay_crop.pdf.

Taft, J.B., M.W. Schwartz, and L.R. Philippe. 1995. Vegetation ecology of flatwoods on the Illinoian till plain. Journal of Vegetation Science 6:647-666.

[USDA-NRCS] United States Department of Agriculture, Natural Resources Conservation Service. 2006a. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

[USDA-NRCS] United States Department of Agriculture, Natural Resources Conservation Service. 2006b. Soil Survey of Greene County, Arkansas. 231 p. Available online: http://www.nrcs.usda.gov/Internet/FSE_MANUSCRIPTS/arkansas/AR055/0/Greene%20County_Arkansas.pdf. (Accessed: 30 November 2015).

[USDA-NRCS] United States Department of Agriculture, Natural Resources Conservation Service. 2010. Conservation Practice Standard: Prescribed Grazing. Practice Code 528. Updated: September 2010. Field Office Technical Guide, Notice 619, Section IV. [Online] Available: efotg.sc.egov.usda.gov/references/public/ne/ne528.pdf.

[USDA-NRCS] United States Department of Agriculture, Natural Resources Conservation Service. 2016. Official Soil Series Descriptions. Available online: https://soilseries.sc.egov.usda.gov/osdname.asp. (Accessed: 17 May 2016).

Woods, A.J., J.M. Omernik, W.H. Martin, G.J. Pond, W.M. Andrews, S.M. Call, J.A. Comstock, and D.D. Taylor. 2002. Ecoregions of Kentucky (color poster with map, descriptive text, summary tables, and photographs): Reston, VA., U.S. Geological Survey (map scale 1:1,000,000).

Contributors

Barry Hart

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	

Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: