Ecological site F140XY017NY Well Drained Lake Plain Last updated: 5/20/2020 Accessed: 05/01/2024 #### General information **Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. #### **MLRA** notes Major Land Resource Area (MLRA): 140X-Glaciated Allegheny Plateau and Catskill Mountains This area is primarily in the Southern New York Section of the Appalachian Plateaus Province of the Appalachian Highlands. The top of the dissected plateau in this MLRA is broad and is nearly level to moderately sloping. The narrow valleys have steep walls and smooth floors. The Catskills in the east have steep slopes. Elevation is typically 650 to 1,000 feet on valley floors; 1,650 to 2,000 feet on the plateau surface; and 3,600 feet or more in parts of the Catskills. The average annual precipitation in most of this area is 30 to 45 inches. Rainfall occurs as high-intensity, convective thunderstorms during the summer, but most of the precipitation in this area occurs as snow. The average annual temperature is 40 to 50 degrees F. The dominant soil order in this MLRA is Inceptisols. The soils in the area dominantly have a mesic soil temperature regime, an aquic or udic soil moisture regime, and mixed mineralogy. Frigid soils are found within the higher elevations. This area supports forest vegetation, particularly hardwood species. Beech-birch-maple and elm-ash-red maple are the potential forest types. The extent of oak species increases from east to west, particularly in areas of shallow and dry soils. In some areas conifers, such as white pine, are important. Aspen, hemlock, northern white-cedar, and black ash grow on the wetter soils. In some parts of the area, sugar maple has potential economic significance. Some of the major wildlife species in this area are white-tailed deer, cottontail, turkey, pheasant, and grouse. ## Classification relationships **USDA NRCS:** LRR: R - Northeastern Forage and Forest Region MLRA 140 - Glaciated Allegheny Plateau and Catskills Mountains NY Natural Heritage Program Plant Community Classification: Allegheny Oak Forest PA Natural Heritage Program Plant Community Classification: Red oak - mixed hardwood forest International Vegetation Classification Associations: Black Oak, White Oak) / Blue Ridge Blueberry / Western Brackenfern Allegheny Plateau-Northeast Forest (CEGL006018) ## **Ecological site concept** #### Landform/Landscape Position: The site occurs on lake plains and terraces. Slopes range from 0 to 25 percent. #### Soils: The soils consists of deep and very deep, well drained soils formed in silty glaciolacustrine deposits. Representative soil is Unadilla. #### Vegetation: The reference community is mixed hardwood forest characterized by red oak, white oak, sugar maple, hickories, American beech, hop-hornbeam, serviceberry, southern arrowwood, sessile-leaved bellwort, and false Solomon's seal. Table 1. Dominant plant species | Tree | (1) Quercus rubra
(2) Carya tomentosa | |------------|--| | Shrub | (1) Viburnum recognitum(2) Amelanchier laevis | | Herbaceous | (1) Uvularia sessilifolia
(2) Maianthemum racemosum ssp. racemosum | ## Physiographic features The site occurs on lake plains and old alluvial terraces. Slopes range from 0 to 25 percent. Figure 1. Well Drained Lakeplain is correlated to Unadilla soils Table 2. Representative physiographic features | Landforms | (1) Lake plain
(2) Valley > Terrace | | |-----------|--|--| | Slope | 0–25% | | Table 3. Representative physiographic features (actual ranges) | Slope | 0–35% | |-------|-------| |-------|-------| ### **Climatic features** Mean annual precipitation is 43 inches and evenly distributed throughout the year. Most of the rainfall occurs as high intensity, convective thunderstorms during the summer. Snowfall is common from late in autumn to early spring. Average frost-free and freeze-free days are 122 and 153, respectively. Table 4. Representative climatic features | Frost-free period (characteristic range) | 110-134 days | |--|--------------| | Freeze-free period (characteristic range) | 136-168 days | | Precipitation total (characteristic range) | 965-1,245 mm | | Frost-free period (actual range) | 101-136 days | | Freeze-free period (actual range) | 136-168 days | | Precipitation total (actual range) | 914-1,295 mm | | Frost-free period (average) | 122 days | | Freeze-free period (average) | 154 days | | Precipitation total (average) | 1,092 mm | Figure 2. Monthly precipitation range Figure 3. Monthly minimum temperature range Figure 4. Monthly maximum temperature range Figure 5. Monthly average minimum and maximum temperature Figure 6. Annual precipitation pattern Figure 7. Annual average temperature pattern ### **Climate stations used** - (1) BINGHAMTON [USW00004725], Johnson City, NY - (2) STROUDSBURG [USC00368596], East Stroudsburg, PA - (3) TOWANDA 1 S [USC00368905], Towanda, PA - (4) MONTROSE [USC00365915], Montrose, PA - (5) CORNING [USC00301787], Corning, NY - (6) ROCK HILL 3 SW [USC00307210], Rock Hill, NY - (7) CANTON [USC00361212], Canton, PA #### Influencing water features #### Soil features The soils consists of deep and very deep, well drained soils formed in silty glaciolacustrine deposits. Representative soil is Unadilla. Table 5. Representative soil features | | (1) Glaciolacustrine deposits (2) Alluvium | |--------------------|--| | Drainage class | Well drained | | Permeability class | Moderately slow | ## **Ecological dynamics** The reference community is mixed hardwood forest characterized by red oak, white oak, sugar maple, hickories, American beech, hop-hornbeam, serviceberry, southern arrowwood, sessile-leaved bellwort, and false Solomon's seal. The site is susceptible to establishment of invasive species such as oriental bittersweet, barberry, multi-flora rose, bush honeysuckle, etc. The site is often high-graded for oak timber. The site is suitable to conversion to agriculture (pastureland, hayland, cropland). #### State and transition model States 2 and 5 (additional transitions) State 1 submodel, plant communities State 2 submodel, plant communities #### State 3 submodel, plant communities #### State 4 submodel, plant communities #### State 1 #### **Reference - Mixed Hardwood Forest** Characteristics and indicators. Site was not cleared or cultivated historically. ## **Community 1.1 Old Growth Mixed Hardwood Forest** Mature closed canopy forest. ## **Dominant plant species** - northern red oak (Quercus rubra), tree - white oak (Quercus alba), tree - American beech (Fagus grandifolia), tree - sugar maple (Acer saccharum), tree - mockernut hickory (Carya tomentosa), tree ## Community 1.2 **Young Forest** ## Pathway P Community 1.1 to 1.2 Wind, ice storm,, insect damage. ## Pathway P Community 1.2 to 1.1 Time; succession #### State 2 ## **Managed Timber Forest** Removal of trees of commercial value. Invasive species may be present. ## **Community 2.1** ## **Timber Managed Forest** Forest managed for timber, primarily oak species. Depending on type of management birch, beech, and maple may dominate following commercial timber harvest. ### State 3 ### Invaded Invasive species abundant. Minimally managed forest. ## **Community 3.1** ## Forest with invasive species Non-native and invasive species present (Japanese barberry, multiflora rose, bush honeysuckle, stiltgrass. #### State 4 #### **Pastureland** Site converted to pasture for livestock grazing or hay production. Resilience management. Must be managed (grazed, mowed, etc.) to maintain pastureland. ## Community 4.1 Introduced grasses and forbs for grazing, hay production, or wildlife ## Community 4.2 Woody plant encroachment ### Pathway P Community 4.1 to 4.2 Lack of management (mowing, grazing, prescribed fire) #### Pathway P Community 4.2 to 4.1 Mowing, brush management, prescribed fire. #### **Conservation practices** **Brush Management** Prescribed Burning #### State 5 #### **Restored and/or Minimally Managed Forest** Restored forest or second-growth forest. Characteristics and indicators. Site was cleared and/or cultivated historically. ## Transition T State 1 to 2 Timber harvest. ## Transition T State 1 to 3 Establishment of invasive species. ## Transition T State 1 to 4 Land use conversion. ### **Conservation practices** Land Clearing ## Restoration pathway R State 2 to 1 #### **Conservation practices** | Forest Stand Improvement | |---| | Forest Land Management | | Prescribed Forestry | | Forest Management Plan - Written | | Forest Management Plan - Applied | | Forest stand improvement for habitat and soil quality | ## Transition T State 2 to 4 Land use conversion #### **Conservation practices** Land Clearing ## Restoration pathway R State 2 to 5 ## Restoration pathway R State 3 to 1 Invasive species management/removal. ## **Conservation practices** **Invasive Plant Species Control** **Invasive Species Pest Management** Biological suppression and other non-chemical techniques to manage brush, weeds and invasive species Biological suppression and other non-chemical techniques to manage herbaceous weeds invasive species Transition T State 3 to 4 Restoration pathway T State 4 to 5 Transition T State 5 to 4 ### Additional community tables ## Inventory data references Site Development and Testing Plan: Future work to validate the vegetation information in this provisional ecological site description is needed. This will include field activities to collect low and medium intensity sampling and analysis of that data. Field reviews should be done by soil scientists and vegetation specialists. A final field review, peer review, quality control, and quality assurance reviews of the ESD will be needed to produce the final approved level document. Reviews of the project plan are to be conducted by the Ecological Site Technical Team. #### Other references Edinger, G.J., Evans, D.J., Gebauer, S., Howard, T.G., Hunt, D.M., and A.M. Olivero, A.M. (eds.). 2014. Ecological Communities of New York State, Second Edition: A revised and expanded edition of Carol Reschke's Ecological Communities of New York State. New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY. Zimmerman, E., T. Davis, G. Podniesinski, M. Furedi, J. McPherson, S. Seymour, B. Eichelberger, N. Dewar, J. Wagner, and J. Fike (editors). 2012. Terrestrial and Palustrine Plant Communities of Pennsylvania, 2nd Edition. Pennsylvania Natural Heritage Program, Pennsylvania Department of Conservation and Natural Resources, Harrisburg, Pennsylvania. ## **Approval** Nels Barrett, 5/20/2020 ## Rangeland health reference sheet Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site. | Author(s)/participant(s) | | |---|-------------------| | Contact for lead author | | | Date | 05/01/2024 | | Approved by | Nels Barrett | | Approval date | | | Composition (Indicators 10 and 12) based on | Annual Production | #### **Indicators** | 1. | Number and extent of rills: | |----|----------------------------------| | 2. | Presence of water flow patterns: | 3. Number and height of erosional pedestals or terracettes: | 4. | Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): | |-----|--| | 5. | Number of gullies and erosion associated with gullies: | | 6. | Extent of wind scoured, blowouts and/or depositional areas: | | 7. | Amount of litter movement (describe size and distance expected to travel): | | 8. | Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): | | 9. | Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): | | 10. | Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: | | 11. | Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): | | 12. | Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): | | | Dominant: | | | Sub-dominant: | | | Other: | | | Additional: | | 13. | Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): | | 14. | Average percent litter cover (%) and depth (in): | | 15. | Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual- | | | production): | |-----|--| | 16. | Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: | | 17. | Perennial plant reproductive capability: |