Ecological site F144BY506ME Semi-rich Till Slope Last updated: 9/27/2024 Accessed: 11/21/2024 #### General information **Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. #### **MLRA** notes Major Land Resource Area (MLRA): 144B-New England and Eastern New York Upland, Northern Part This major land resource area (MLRA) is in Maine (56 percent), New Hampshire (22 percent), Vermont (14 percent), Massachusetts (6 percent), Connecticut (1 percent), and New York (1 percent). It makes up about 22,728 square miles (58,864 square kilometers). The MLRA consists of a relatively young landscape shaped by the Laurentide Ice Sheet, which covered the region from 35,000 to 10,000 years ago. Rolling hills of dense basal till converge on ridges of shallow bedrock that were scoured by glacial ice. River valleys that were flooded by melting glacial water or seawater house large expanses of glacial outwash and stratified drift in inland areas and, to a lesser extent, glaciomarine and glaciolacustrine sediment deposits in coastal areas. Organic bogs, ablation till, and alluvial flood plains make up the remaining portions of the MLRA. The soils in this region are dominantly Entisols, Spodosols, and Inceptisols. They commonly have a fragipan. The dominant suborders are Ochrepts, Orthods, Aquepts, Fluvents, and Saprists. The soils in the region dominantly have a frigid soil temperature regime with some cryic areas at higher elevation, a udic soil moisture regime, and mixed mineralogy. Most of the land is forested, and 98 percent is privately owned. Significant amounts of forest products are produced including lumber, pulpwood, Christmas trees, and maple syrup. Principal agricultural crops include forage and grains for dairy cattle, potatoes, apples, and blueberries. Wildlife habitat and recreation are important land uses. Stoniness, steep slopes, and poor drainage limit the use of many of the soils. ### Classification relationships NRCS: Land Resource Region: R—Northeastern Forage and Forest Region MLRA: 144B—New England and Eastern New York Upland, Northern Part #### **Ecological site concept** This site occurs mostly on well- to moderately well-drained loam soils and associated somewhat poorly-drained soils. Bedrock is greater than 20 inches below the mineral soil surface. Soils are semi-rich due to calcareous bedrock material from which they are derived. This site is commonly found on backslope and footslope positions but may occur on flats or any number of landforms. The vegetation is characterized by northern hardwoods, particularly sugar maple, yellow birch, and beech, with basswood, ash, and northern white cedar as less-abundant indicators of these semi-rich soils. Shallower and wetter inclusions in this site typically produce more of these indicator species. On gentler slopes, these soils are often farmed. #### **Associated sites** | F144BY507ME | Semi-rich Till Toeslope | |-------------|--| | | The Semi-rich Till Toeslope site usually occurs downslope, on wetter, richer soils than the Semi-rich Till | | | Slope. | | F144BY705ME | Shallow and Mod-deep Semi-rich Till | |-------------|--| | | The Shallow and Moderately Deep Semi-rich Till site often occurs upslope of the Semi-rich Till Slope site, | | | where much of the soil area is less than 20 inches deep to calcareous bedrock. | #### Similar sites | Enriched Loamy Cove The Semi-rich Till Slope site is very similar to the Enriched Loamy Cove site, but it derives its nutrients primarily from calcareous parent material and does not accumulate nutrients due to its more exposed landscape position. Therefore it tends to be less rich than the Enriched Loamy Cove. | |--| | Loamy Slope (Northern Hardwoods) The Loamy Slope site occurs in a similar landscape position to the Semi-rich Till Slope, but on more acidic soils derived from non-calcareous bedrock. | #### Table 1. Dominant plant species | Tree | (1) Acer saccharum
(2) Fraxinus americana | |------------|--| | Shrub | Not specified | | Herbaceous | Not specified | ## Physiographic features This site occurs mostly on moderate slopes on till landforms, especially hills. It may also be found on somewhat flatter till plains and ground moraine landforms. Slopes are typically 0-35%, sometimes up to 60%. Elevations range from 0-2500 feet above sea level. This site may have a seasonally-high water table. Table 2. Representative physiographic features | Landforms | (1) Upland > Hill(2) Till plain > Ground moraine(3) Upland > Drumlinoid ridge | |--------------------|--| | Runoff class | Low to high | | Flooding frequency | None | | Ponding frequency | None | | Elevation | 0–762 m | | Slope | 0–35% | | Water table depth | 0–81 cm | | Aspect | Aspect is not a significant factor | #### **Climatic features** The climate is humid and temperate and is characterized by warm summers and cold winters. Precipitation generally is evenly distributed throughout the year. Near the coast, it is slightly lower in summer. In inland areas, it is slightly higher in spring and fall. Rainfall occurs during high-intensity, convective thunderstorms in summer. In winter, most of the precipitation occurs as moderate-intensity storms (northeasters) that produce large amounts of rain or snow. Heavy snowfalls commonly occur late in winter. Temperatures and the length of the freeze-free period increase from north to south and closer to the coast. This major land resource area (MLRA) covers four states and may have substantial climate variability among locations: Maine (56 percent), New Hampshire (22 percent), Vermont (14 percent), Massachusetts (6 percent), Connecticut (1 percent), and New York (1 percent). | Frost-free period (characteristic range) | 117-140 days | |--|----------------| | Freeze-free period (characteristic range) | 144-170 days | | Precipitation total (characteristic range) | 1,067-1,219 mm | | Frost-free period (actual range) | 98-146 days | | Freeze-free period (actual range) | 133-180 days | | Precipitation total (actual range) | 1,016-1,372 mm | | Frost-free period (average) | 126 days | | Freeze-free period (average) | 159 days | | Precipitation total (average) | 1,168 mm | Figure 1. Monthly precipitation range Figure 2. Monthly minimum temperature range Figure 3. Monthly maximum temperature range Figure 4. Monthly average minimum and maximum temperature Figure 5. Annual precipitation pattern Figure 6. Annual average temperature pattern ### Climate stations used - (1) BELFAST [USC00170480], Belfast, ME - (2) CORINNA [USC00171628], Corinna, ME - (3) DOVER-FOXCROFT WWTP [USC00171975], Dover Foxcroft, ME - (4) FARMINGTON [USC00172765], Farmington, ME - (5) GARDINER [USC00173046], Gardiner, ME - (6) JONESBORO [USC00174183], Addison, ME - (7) LEWISTON [USC00174566], Auburn, ME - (8) MADISON [USC00174927], Anson, ME - (9) NEWCASTLE [USC00175675], Newcastle, ME - (10) ORONO [USC00176430], Old Town, ME - (11) WATERVILLE TRTMT PLT [USC00179151], Waterville, ME - (12) WEST ROCKPORT 1 NNW [USC00179593], Rockport, ME - (13) AUGUSTA STATE AP [USW00014605], Augusta, ME - (14) BANGOR INTL AP [USW00014606], Bangor, ME - (15) PORTLAND INTL JETPORT [USW00014764], Portland, ME - (16) ACADIA NP [USC00170100], Bar Harbor, ME ### Influencing water features This site is not typically influenced by streams or wetlands. #### Soil features The soils of this site are deep, well- and moderately well-drained. They formed in semi-rich till characterized by circumneutral pH, the lack of a densely compacted subsurface horizon, and few rocks. When present, rock fragments are usually soft, and easy to break with your fingers. Soil textures are loams to sandy loams throughout the profile. Soil pH increases with depth and ranges from 4.5 to 7.3. Often the soil surface is bare of leaf litter. This site may include patches of moderately deep soils, with lithic bedrock within 20 to 40 inches of the soil surface. In these areas, as well as in wetter drainageways, cedar tends to be more abundant in the plant community. These patches tend to be embedded within a larger matrix of soils that are more typical of this ecological site. Representative soils are Pittsfield, Colrain, Buckland, Lombard, Vershire, Dummerston, Penobscot, Wassookeag, and Sebasticook. Table 4. Representative soil features | Parent material | (1) Supraglacial till–metamorphic rock(2) Residuum–metamorphic rock(3) Supraglacial till–schist(4) Till–phyllite | |---|---| | Surface texture | (1) Loam(2) Loam(3) Very fine sandy loam(4) Loam | | Drainage class | Moderately well drained to well drained | | Permeability class | Very slow to moderate | | Soil depth | 56–183 cm | | Surface fragment cover <=3" | 0% | | Surface fragment cover >3" | 2–9% | | Available water capacity (10.2-17.8cm) | Not specified | | Soil reaction (1:1 water) (8.1-18.8cm) | Not specified | | Subsurface fragment volume <=3" (12.7-38.1cm) | Not specified | | Subsurface fragment volume >3" (5.1-104.1cm) | Not specified | ## **Ecological dynamics** [Caveat: The vegetation information contained in this section and is only provisional, based on concepts, and future projects support validation through field work. *] The vegetation groupings described in this section are based on the terrestrial ecological system classification and vegetation associations developed by NatureServe (Comer et al., 2003) and localized associations provided by the New York Natural Heritage Program (Edinger et al., 2014), Maine Natural Areas Program (Gawler and Cutko, 2010), New Hampshire Natural Heritage Program (Sperduto and Nichols, 2011), and Massachusetts Division of Fisheries and Wildlife (Swain, 2020). The vegetation is characterized by northern hardwoods, particularly sugar maple, yellow birch, and beech, with basswood, ash, and northern white cedar as less-abundant indicators of these semi-rich soils. Christmas fern is often present in the understory. Wetter inclusions in this site typically produce more of these indicator species. Historically, American chestnut would also be dominant on this site, but currently it has been all but eliminated from the region by chestnut blight. When forested, treethrow and logging are the most common disturbances on this site. The site is resilient following these disturbances and succeeds through an herbaceous and shrubby phase prior to tree establishment and eventual return to the reference community. On gentler slopes, this site is often cultivated for crop or pasture given the richness of the soil. When cropland or pastureland management ceases, as occurred across most of the area in the late 19th century, the site either returns to hardwoods or may transition to a white pine forest. Once white pine is established, it tends to form a single age stand with low diversity and little understory. This site includes the following state natural heritage program types: - Semi-rich mesic sugar maple forests (Sperduto and Nichols 2004) - Enriched Northern Hardwoods Forest (Gawler and Cutko 2010) - Sugar Maple Forest (Gawler and Cutko 2010) - Semi-rich mesic sugar maple forests (Thompson and Sorenson 2000) #### State and transition model # F144BY506ME – Semi-rich Till Slope State 1 Reference State / Current Potential # **Community 1.1 Northern Hardwood Forest** Hardwoods dominate multi-age stand, typically sugar maple, cedar yellow birch, basswood, and ash. ### Community 1.2 ### **Herbaceous Phase** Wild raspberry, ferns, and other herbs colonize the open land # Community 1.3 Successional Forest Diverse young hardwoods, including species not dominant in the reference community # Community 1.4 Mature Forest 50-80 yr 50-80 year old hardwood stand with scattered pioneer species Pathway P1.1-1.2 Community 1.1 to 1.2 windthrow, blowdown, fire Pathway P1.2-1.3 Community 1.2 to 1.3 vegetation development (succession) Pathway P1.3-1.4 Community 1.3 to 1.4 vegetation development (succession) Pathway P1.4-1.1 Community 1.4 to 1.1 windthrow, blowdown, fire Pathway P1.4-1.2 Community 1.4 to 1.2 windtrhrow, blowdown, fire State 2 Grassland / Hay land Community 2.1 Pasture or Hay Land Cleared and planted fields of mostly perennial herbaceous species. State 3 Crop Land # Community 3.1 Annual or Perennial Crops Cleared and cultivated fields, heavily managed with regular soil disturbance. #### State 4 ### **White Pine** # Community 4.1 Herbs and Shrubs Wild raspberry, ferns, and other herbs colonize the open land # **Community 4.2 White Pine Forest** Single age white pine forest. ## Pathway P4.1-4.2 Community 4.1 to 4.2 Vegetation development (succession) # Pathway P4.2-4.1 Community 4.2 to 4.1 harvest, logging ## **Conservation practices** Forest Stand Improvement Forest Land Management # Transition T1-2 State 1 to 2 tree removal, pasture or hayfield establishment ### **Conservation practices** | Clearing and Snagging | |--------------------------------| | Land Clearing | | Invasive Plant Species Control | | Managed Haying/Grazing | # Transition T1-3 State 1 to 3 Tree clearing, crop establishment ### **Conservation practices** | Clearing and Snagging | |-----------------------| | Cover Crop | | Land Clearing | # Transition T1-4 State 1 to 4 selective harvest ## **Conservation practices** Forest Stand Improvement Forest Land Management # Transition R2-1 State 2 to 1 abandonment, vegetation development (succession), planting ## **Conservation practices** | Tree/Shrub Site Preparation | |---| | Tree/Shrub Establishment | | Upland Wildlife Habitat Management | | Restoration and Management of Natural Ecosystems | | Native Plant Community Restoration and Management | | Invasive Plant Species Control | | Managed Haying/Grazing | # Transition T2-4 State 2 to 4 tree establishment ## **Conservation practices** | Tree/Shrub Site Preparation | |-----------------------------| | Tree/Shrub Establishment | Invasive Plant Species Control # Restoration pathway R3-1 State 3 to 1 abandonment, vegetation development (succession), tree planting ## **Conservation practices** | Tree/Shrub Establishment | |---| | Upland Wildlife Habitat Management | | Tree/Shrub Pruning | | Restoration and Management of Natural Ecosystems | | Native Plant Community Restoration and Management | | Invasive Plant Species Control | # Transition T3-4 State 3 to 4 tree planting ### **Conservation practices** | Tree/Shrub Site Preparation | |--------------------------------| | Tree/Shrub Establishment | | Invasive Plant Species Control | # Restoration pathway R4-1 State 4 to 1 abandonment, vegetation development (succession), plantings #### **Conservation practices** | Tree/Shrub Site Preparation | |---| | Tree/Shrub Establishment | | Upland Wildlife Habitat Management | | Restoration and Management of Natural Ecosystems | | Native Plant Community Restoration and Management | | Invasive Plant Species Control | # Restoration pathway T4-2 State 4 to 2 Tree removal, pasture or hay land establishment ### **Conservation practices** | Clearing and Snagging | | |-----------------------|--| | Land Clearing | | # Transition T4-3 State 4 to 3 tree removal, cropland establishment ### **Conservation practices** | Clearing and Snagging | |-----------------------| | Cover Crop | | Land Clearing | ## Additional community tables ### Inventory data references Future work is needed, as described in a future project plan, to validate the information presented in this provisional ecological site description. Future work includes field sampling, data collection and analysis by qualified vegetation ecologists and soil scientists. As warranted, annual reviews of the project plan can be conducted by the Ecological Site Technical Team. A final field review, peer review, quality control, and quality assurance reviews of the ESD are necessary to approve a final document. ### Other references Comer, P., D. Faber-Langendoen, R. Evans, S. Grawler, C. Josse, G. Kittel, S. Menard, M. Pyne, M. Reid, K. Schultz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia Edinger, G. J., D. J. Evans, S. Gebauer, T. G. Howard, D. M. Hunt, and A. M. Olivero (editors). 2014. Ecological Communities of New York State. Second Edition. A revised and expanded edition of Carol Reschke's Ecological Communities of New York State. New York Natural Heritage Program, New York State Department of Environmental Conservation, Albany, NY. Gawler, S. and A. Cutko. 2010. Natural Landscapes of Maine: A Guide to Natural Communities and Ecosystems. Maine Natural Areas Program, Maine Department of Conservation, Augusta, Maine. NatureServe. 2021. NatureServe Explorer: An online encyclopedia of life [web application]. NatureServe, Arlington, Virginia. https://explorer.natureserve.org/. (accessed 10 July. 2021). Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. Agricultural Handbook 296 Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Official Soil Series Descriptions. Available online. (accessed 11 Aug. 2021). Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Climate Research Station Data. Available online. (accessed 23 June. 2021). Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database for [MLRA 141, Maine]. Available online. (accessed 14 Oct. 2021). Sperduto, D.D. and William F. Nichols. 2011. Natural Communities of New Hampshire. 2nd Ed. NH Natural Heritage Bureau, Concord, NH. Pub. UNH Cooperative Extension, Durham, NH. Swain, P. C. 2020. Classification of the Natural Communities of Massachusetts. Massachusetts Division of Fisheries and Wildlife, Westborough, MA USNVC [United States National Vegetation Classification]. 2017. United States National Vegetation Classification Database V2.01. Federal Geographic Data Committee, Vegetation Subcommittee, Washington DC. Available The U.S. National Vegetation Classification (usnvc.org) (accessed 2 July. 2021). #### **Contributors** Christopher Mann ### **Approval** Nels Barrett, 9/27/2024 #### **Acknowledgments** Nels Barrett and Nick Butler provided considerable review of this ecological site concept. ### Rangeland health reference sheet Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site. | Author(s)/participant(s) | | |---|-------------------| | Contact for lead author | | | Date | 06/29/2020 | | Approved by | Nels Barrett | | Approval date | | | Composition (Indicators 10 and 12) based on | Annual Production | ## | nc | ndicators | | | |-----|---|--|--| | 1. | Number and extent of rills: | | | | 2. | Presence of water flow patterns: | | | | 3. | Number and height of erosional pedestals or terracettes: | | | | 4. | Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): | | | | 5. | Number of gullies and erosion associated with gullies: | | | | 6. | Extent of wind scoured, blowouts and/or depositional areas: | | | | 7. | Amount of litter movement (describe size and distance expected to travel): | | | | 8. | Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): | | | | 9. | Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): | | | | 10. | Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: | | | | 11. | Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): | | | | Dominant: | |--| | | | Sub-dominant: | | Other: | | Additional: | | Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): | | Average percent litter cover (%) and depth (in): | | Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): | | Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: | | Perennial plant reproductive capability: | | | | |