Ecological site F220XY205AK Subalpine Woodlands Gravelly Moist Slopes Last updated: 6/20/2019 Accessed: 04/29/2024 #### General information **Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site. #### **MLRA** notes Major Land Resource Area (MLRA): 220X-Alexander Archipelago-Gulf of Alaska Coast The Southern Alaska Coastal Mountains (MLRA 222) encompasses the Pacific Border Ranges and Coast Mountains physiographic provinces (Wahrhaftig 1965). Spanning approximately 26,355 square miles, the elevation ranges from sea level at the base of glaciers and ice fields to 18,008 feet at Mt. St. Elias. The MLRA was covered by glacial ice during the Pleistocene epoch, a time period spanning from 2.6 million to 11,700 years ago. During interglacial periods glacial extent was reduced, leaving behind various glacial deposits. Over time these deposits have been eroded or buried by colluvium and slope alluvium, which now covers more than 90 percent of the unglaciated landscape. Paleozoic, Mesozoic, and Lower Tertiary stratified sedimentary rocks, and occasionally Paleozoic intrusive rocks, underlie much of the area and are exposed on steep mountain slopes and ridges (USDANRCS 2006). This landscape lies in the true alpine zone where glacial ice is, and has been, the dominant ground cover. Glacial ice encompassed all the MLRA during the Late Wisconsinan glaciation, 25,000 - 21,000 years ago (Kauffman et al. 2011). Changes in climatic conditions following this period resulted in the recession of some glaciers and slowly exposed new surfaces for inhabitation by terrestrial ecosystems. Pioneer plant communities began to establish on the new substrate within the first 30 years and consisted mostly of evergreen, herbaceous dwarf shrubs with some pockets of low shrubs. These communities quickly transitioned to tall shrubs within 100 years of deglaciation. By approximately 13,000 years ago, four stable plant communities emerged across the non-glaciated landscape – ericaceous dwarf shrub, low shrub, tall shrub, and herbaceous communities – and form the present-day ecosystems (Boggs et al. 2010). # Classification relationships USFS Ecoregion Province: Marine Mountains (M240), Forest-Meadow High (M242b) (Bailey 2007) U.S. EPA Level III Ecoregion: Pacific Coastal Mountains (119) (Gallant et al. 2010) National Vegetation Classification – Ecological Systems: Alaskan Pacific Maritime Subalpine Copperbush Shrubland (CES204.316) (NatureServe 2015) Biophysical Settings: Alaskan Pacific Maritime Subalpine Alder-Salmonberry Shrubland (BpS 7816520) (LANDFIRE 2009) Alaska Natural Heritage Program Landcover Class: Low-Tall Shrub: Alder-Salmonberry (Boggs et al. 2016) Alaskan Vegetation Classification: Closed Low Ericaceous Shrub (Viereck et al. 1992) # **Ecological site concept** Subalpine Low Scrub Gravelly Slopes ecological sites occur on concave snow accumulation areas on moderate to steep subalpine mountain slopes (Viereck et al. 1992; DeVelice et al. 1999; Boggs et al. 2008). The soils are moist and have a thin organic matter layer over silt, sand, gravel, or bedrock (Boggs et al. 2008). The reference vegetation on this ecological site is defined by low shrubs and herbaceous vegetation. Copperbush (Elliottia pyroliflora (Bong.) S.W. Brim & P.F. Stevens) is the dominant low shrub, and deercabbage (Nephrophyllidium crista-galli (Menzies ex Hook.) Gilg) is a characteristic herbaceous species of the site. Extensive snow accumulation and a short growing season maintain this plant community (Viereck et al. 1992). #### **Associated sites** | F220XY350AK | Subalpine Woodlands Gravelly Dry Slopes Located adjacent to R222XY359AK but in a slightly more protected positions | | |-------------|--|--| | R220XY358AK | Subalpine Scrub Gravelly Dry Slopes Located in a slightly higher landscape position | | Table 1. Dominant plant species | Tree | Not specified | | | |------------|-----------------------------------|--|--| | Shrub | (1) Elliottia pyroliflora | | | | Herbaceous | (1) Nephrophyllidium crista-galli | | | # Physiographic features Subalpine Low Scrub Gravelly Slopes ecological sites occur on subalpine mountain slopes in snow accumulation areas. They are in a slightly more exposed landscape position than the closely associated Subalpine Dwarf Tree Scrub Gravelly Slopes ecological sites. They are reported from approximately 1200 to 2000 feet ASL (DeVelice et al. 1999; Boggs et al. 2008). The site does not experience flooding, but rather generates runoff to adjacent, downslope ecological sites. Figure 1. Representative block diagram of Subalpine Low Scrub Gravelly Slopes and associated ecological sites. #### Climatic features Climate data and analyses are derived from 30-year averages gathered from National Oceanic and Atmospheric Administration (NOAA) weather stations contained within the range of an ecological site. However, no weather stations are available for this ecological site. The following information is a general climate description of the MLRA. The Southern Alaska Coastal Mountains falls into two Köppen-Geiger climate classifications (Peel et al. 2007): tundra climate (ET) dominates the majority of the MLRA with small portions falling into the subarctic with cool summers and year around rainfall climate (Dfc). In the tundra climate, average temperatures are below 50°F for all months of the year, while the subarctic climate can experience highs above 50°F. Precipitation does not differ significantly across the seasons, but due to the high latitude environment solar radiation extremes occur with seasonal variability. The soil temperature regime of MLRA 222 is classified as cryic, where the mean annual soil temperature is between 32°F and 46°F (USDA-NRCS 2006). Temperature and precipitation are affected by latitude, elevation, and proximity to maritime or continental zones. The average annual temperature and length of freeze-free period are not known. At the higher elevations, freezing temperatures are likely to occur during any month of the year. Most of the precipitation occurs as snowfall with rainfall increasing in importance in the southeast. Average annual precipitation is 120 to 200 inches but can be 250 inches or more at the highest elevations. Average annual snowfall ranges from about 200 to 800 inches. The snowfall greatly exceeds the annual snowmelt in many places, as evidenced by the abundance and extent of glaciers and ice fields (USDA-NRCS 2006). # Influencing water features Subalpine Low Scrub Gravelly Slopes ecological sites are not influenced by wetland or riparian water features. Precipitation is the main source of water for this ecological site. Infiltration is likely very slow (Hydrologic Group D), and surface runoff is high. Surface runoff contributes some water to downslope ecological sites. Figure 2. Hydrologic cycling in Subalpine Low Scrub Gravelly Slopes ecological site. #### Soil features No soil survey data is currently available for this ecological site. The following is a general description based on a review of the scientific literature. Soils of this ecological site occur in areas of snow accumulation. They are shallow, stony mineral soils formed in colluvium over bedrock (Viereck et al. 1992; DeVelice et al. 1999; Boggs et al. 2008). #### **Ecological dynamics** The information in this Ecological Dynamics section, including the state-and-transition model (STM), was developed based on historical data, current field data, professional experience, and a review of the scientific literature. As a result, all possible scenarios or plant species may not be included. Key indicator plant species, disturbances, and ecological processes are described to inform land management decisions. The MLRA lies within the true alpine zone where glaciers are the dominant land cover. The non-glaciated areas are inhabited by a vegetative matrix resulting from a complex interaction among elevation, varying microclimates resulting from landscape topography, and natural disturbance regimes. The result is a heterogeneous landscape of ericaceous dwarf shrubs, low shrubs, and tall shrubs. Subalpine Low Scrub Gravelly Slopes ecological sites form an aspect of this vegetative continuum. This ecological site occurs on mountain backslopes on snow accumulation beds in the subalpine parkland life zone above treeline. Low shrubs and herbs are characteristic species of this site. There are two primary disturbance regimes that maintain Subalpine Low Scrub Gravelly Slopes ecological sites: late-season snow accumulation and short growing season. Snows accumulate in depressions at the bases of steep banks and remain until late in the spring. This prolonged snow results in a shorter growing season compared to adjacent ecological sites. The state-and-transition model that follows provides a detailed description of each state, community phase, pathway, and transition. This model is based on available experimental research, field observations, literature reviews, professional consensus, and interpretations. #### State and transition model Legend No known state transitions or phase shifts # State 1 STATE 1 - REFERENCE STATE The reference plant community is categorized as a shrubland community, dominated by low shrubs and herbaceous vegetation. The one community phase within the reference state is maintained by deep snow accumulation and a short growing season. # Community 1.1 Copperbush/Deercabbage Figure 3. Subalpine Low Scrub Gravelly Slopes ecological site at Glacier Bay National Park and Preserve (Boggs et al. 2008). The community is characterized by a near continuous cover of low shrubs interspersed with herbs. Copperbush is the dominant species, comprising up to 80 percent of the ground cover (Viereck et al. 1992; DeVelice et al. 1999; Boggs et al. 2008; NatureServe 2018). Few dwarf shrubs may be present and can include Aleutian mountainheath (*Phyllodoce aleutica* (Spreng.) A. Heller), western moss heather (*Cassiope mertensiana* (Bong.) G. Don), Lapland cornel (*Cornus suecica* L.), and partridgefoot (*Luetkea pectinata* (Pursh) Kuntze). Herbaceous diversity is low, with species such as deercabbage, common ladyfern (*Athyrium filix-femina* (L.) Roth), spreading woodfern (*Dryopteris expansa* (C. Presl) Fraser-Jenkins & Jermy), western oakfern (*Gymnocarpium dryopteris* (L.) Newman), and pioneer violet (*Viola glabella* Nutt.) (DeVelice et al. 1999; Boggs et al. 2008; NatureServe 2018). # Additional community tables # **Animal community** The subalpine parkland zone of MLRA 222 provides desirable habitat opportunities for many wildlife species. The matrix of herbaceous meadows, low and tall shrubs, and small stands of stunted trees offer foraging opportunities and thermal and protective cover. Herbivores – such as Sitka deer (Odocoileus hemionus sitkensis), mountain goats (Oreamnos americanus), and hoary marmot (Marmota calligata) – readily graze the herbaceous meadows. Grouse (Dendragapus spp.) and ptarmigan (Lagopus spp.) utilize these meadows and low shrub communities for hunting insects. A small portion of bears (Ursus sp.), mostly sows with cubs, forage in this zone throughout the summer. Lastly, various songbirds will utilize the tall shrubs and stunted trees for nesting cover (Carsten 2007). # Inventory data references No field plots were available for this site. A review of the scientific literature and professional experience were used to approximate the plant communities for this provisional ecological site. Information for the state-and-transition model was obtained from the same sources. All community phases are considered provisional based on these plots and the sources identified in ecological site description. ### Other references Bailey, R.G. 1995. Ecoregions of North America. U.S. Department of Agriculture, Forest Service, Washington, DC, map scale 1: 15,000,000. Available at https://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-north-america/. Boggs, K.W., S.C. Klein, J.E. Grunblatt, G.P. Streveler, and B. Koltun. 2008. Landcover Classes and Plant Associations of Glacier Bay National Park and Preserve. Natural Resource Technical Report NPR/GLBA/NRTR-2008/093. National Park Service, Fort Collins, CO. 254 pps. Boggs, K., S.C. Klein, J. Grunblatt, T. Boucher, B. Koltun, M. Sturdy, and G.P. Streveler. 2010. Alpine and subalpine vegetation chronosequences following deglaciation in coastal Alaska. Arctic, Antarctic, and Alpine Research 42: 385-395. Boggs, K., L. Flagstad, T. Boucher, T. Kuo, M. Aisu, J. Tande, and J. Michaelson. 2016. Vegetation Map and Classification: Southern Alaska and Aleutian Islands. Alaska Natural Heritage Program, Alaska Center for Conservation Science, University of Alaska Anchorage. 90 pps. Carsten, R. 2007. Chapter 5.2 Terrestrial habitats of Southeast Alaska. In: Schoen, J.W. and E. Dovichin (eds). The Coastal Forests and Mountains Ecoregion of Southeastern Alaska and the Tongass National Forest: A Conservation Assessment and Resource Synthesis. Audubon Alaska and The Nature Conservancy, Anchorage, AK. DeVelice, R.L., C.J. Hubbard, K. Boggs, S. Boudreau, M. Potkin, T. Boucher, and C. Werthelm. 1999. Plant Community Types of the Chugach National Forest: Southcentral Alaska. Technical Publication R10-TP-76. United States Department of Agriculture, Forest Service, Chugach National Forest, Alaska Region. 377 pps. Gallant, A.L., E.F. Binnian, J.M. Omernick, and M.B. Shasby. 2010. Level III Ecoregions of Alaska. Corvallis, OR, U.S. EPA, National Health and Environmental Effects Research Laboratory, map scale 1: 5,000,000. Available at http://http://www.epa.gov/eco-research//ecoregion-download-files-state-region-10. (Accessed 11 September 2018). Kauffman, D.S., N.E. young, J.P. Briner, and W.F. Manley. 2011. Alaska Palaeo-Glacier Atlas (Version 2), pps. 427-445. In: Ehlers, J., P.L. Gibbard, and P.D. Hughes (eds.). Developments in Quaternary Science, Volume 15. Amsterdam, The Netherlands. LANDFIRE. 2009. Biophysical Setting 7816520 Alaskan Pacific Maritime Subalpine Alder-Salmonberry Shrubland. In: LANDFIRE National Vegetation Dynamics Models. USDA Forest Service and US Department of Interior. Washington, DC. NatureServe. 2018. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1 NatureServe, Arlington, VA. Available at http://explorer.natureserve.org. (Accessed 10 September 2018). Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences 11: 1633-1644. United States Department of Agriculture – Natural Resources Conservation Service (USDA-NRCS). 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 682 pps. Viereck, L.A., C.T. Dyrness, A.R. Batten, and K.J. Wenzlick. 1992. The Alaska Vegetation Classification. General Technical Report PNW-GTR-286. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 278 pps. Wahrhaftig, C. 1965. Physiographic Divisions of Alaska. Geological Survey Professional paper 482. U.S. Department of the Interior, Geological Survey, U.S. Government Printing Office, Washington, DC. 52 pps. # **Approval** Michael Margo, 6/20/2019 ### Rangeland health reference sheet Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site. | Author(s)/participant(s) | | |--------------------------|--| |--------------------------|--| | Date | | | | | | | |------|---|---------------------|---|--|--|--| | Аp | pproved by | | | | | | | Аp | pproval date | | | | | | | Сс | Composition (Indicators 10 and 12) based on A | nnual Production | | | | | | | dicators . Number and extent of rills: | | | | | | | ١. | . Number and extent or mis. | | | | | | | 2. | Presence of water flow patterns: | | | | | | | 3. | Number and height of erosional pedestals or terracettes: | | | | | | | 4. | Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): | | | | | | | 5. | Number of gullies and erosion associated with gullies: | | | | | | | 6. | Extent of wind scoured, blowouts and/or depositional areas: | | | | | | | 7. | . Amount of litter movement (describe size and distance expected to travel): | | | | | | | 8. | Soil surface (top few mm) resistance to ere values): | osion (stability va | values are averages - most sites will show a range of | | | | | 9. | Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): | | | | | | | 0. | Effect of community phase composition (r distribution on infiltration and runoff: | elative proportio | on of different functional groups) and spatial | | | | | 1. | Presence and thickness of compaction lay mistaken for compaction on this site): | yer (usually none | e; describe soil profile features which may be | | | | 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): Contact for lead author | | Dominant: | |-----|--| | | Sub-dominant: | | | Other: | | | Additional: | | 13. | Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): | | 14. | Average percent litter cover (%) and depth (in): | | 15. | Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): | | 16. | Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: | | 17. | Perennial plant reproductive capability: | | | |