

# Ecological site R226XY050AK Beach Dunes and Ridges (St. George Island)

Accessed: 05/02/2024

#### **General information**

**Provisional**. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Table 1. Dominant plant species

| Tree       | Not specified |  |
|------------|---------------|--|
| Shrub      | Not specified |  |
| Herbaceous | Not specified |  |

# Physiographic features

This site is characterized by sand dunes and sandy/gravely beach ridges that run parallel to the coasts of the Bering Sea.

Table 2. Representative physiographic features

| Landforms | (1) Beach<br>(2) Dune<br>(3) Ridge |
|-----------|------------------------------------|
| Elevation | 0–120 ft                           |
| Slope     | 0–100%                             |

#### **Climatic features**

Table 3. Representative climatic features

| Frost-free period (average)   | 120 days |
|-------------------------------|----------|
| Freeze-free period (average)  | 100 days |
| Precipitation total (average) | 24 in    |

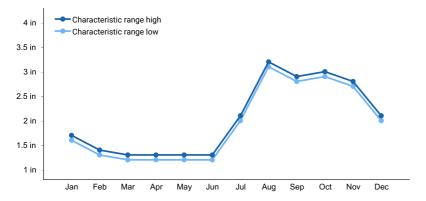



Figure 1. Monthly precipitation range

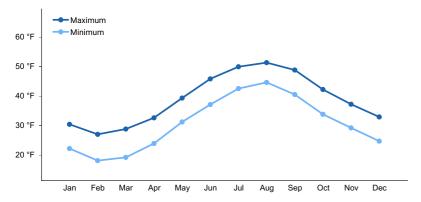



Figure 2. Monthly average minimum and maximum temperature

# Influencing water features

# Soil features

Soils are very deep and well drained. Soils are coarse textured and soil pH is slightly acid. Runoff is very low and permeability is very rapid.

Table 4. Representative soil features

| Surface texture                                       | (1) Peaty sand      |
|-------------------------------------------------------|---------------------|
| Family particle size                                  | (1) Sandy           |
| Drainage class                                        | Well drained        |
| Permeability class                                    | Rapid to very rapid |
| Soil depth                                            | 60–79 in            |
| Surface fragment cover <=3"                           | 0%                  |
| Surface fragment cover >3"                            | 0%                  |
| Available water capacity (0-40in)                     | 2.9–3.1 in          |
| Calcium carbonate equivalent (0-40in)                 | 0%                  |
| Electrical conductivity (0-40in)                      | 0 mmhos/cm          |
| Sodium adsorption ratio (0-40in)                      | 0                   |
| Soil reaction (1:1 water) (0-40in)                    | 6.1–6.5             |
| Subsurface fragment volume <=3" (Depth not specified) | 0%                  |
| Subsurface fragment volume >3" (Depth not specified)  | 0%                  |

# **Ecological dynamics**

# State and transition model

#### **Ecosystem states**

Elymus mollis/
Conioselinum chinense
var. pacificum

#### State 1 submodel, plant communities

1.1. Elymus mollis/ Conioselinum chinense var. pacificum

### State 1

# Elymus mollis/ Conioselinum chinense var. pacificum

# **Community 1.1**

# Elymus mollis/ Conioselinum chinense var. pacificum

Sedges and grasses make up 45% and forbs 55% of the composition. Total annual vascular herbage production is 3980 pounds/acre.

# Additional community tables

Table 5. Community 1.1 plant community composition

| Group           | Common Name            | Symbol | Scientific Name                    | Annual Production (Lb/Acre) | Foliar Cover (%) |
|-----------------|------------------------|--------|------------------------------------|-----------------------------|------------------|
| Grass/Grasslike |                        |        |                                    |                             |                  |
| 1               |                        |        |                                    | 1500–2000                   |                  |
|                 | American dunegrass     | LEMOM2 | Leymus mollis ssp. mollis          | 1150–2000                   | _                |
|                 | sedge                  | CAREX  | Carex                              | 475–500                     | _                |
|                 | red fescue             | FERU2  | Festuca rubra                      | 85–95                       | _                |
|                 | bluegrass              | POA    | Poa                                | 40–50                       | _                |
| Forb            | Forb                   |        |                                    |                             |                  |
| 1               |                        |        |                                    | 2000–2500                   |                  |
|                 | Pacific hemlockparsley | COGM   | Conioselinum gmelinii              | 1100–1130                   | _                |
|                 | seacoast angelica      | ANLU   | Angelica lucida                    | 525–550                     | _                |
|                 | Nootka lupine          | LUNO   | Lupinus nootkatensis               | 475–500                     | _                |
|                 | Tilesius' wormwood     | ARTI   | Artemisia tilesii                  | 30–40                       | _                |
|                 | whorled lousewort      | PEVE   | Pedicularis verticillata           | 2–8                         | _                |
|                 | larkspurleaf monkshood | ACDE2  | Aconitum delphiniifolium           | 0–5                         | _                |
|                 | boreal yarrow          | ACMIB  | Achillea millefolium var. borealis | 0–5                         |                  |
|                 | boreal draba           | DRBO   | Draba borealis                     | 0–5                         |                  |
|                 | North Pacific draba    | DRHY   | Draba hyperborea                   | 0–5                         |                  |
|                 | field horsetail        | EQAR   | Equisetum arvense                  | 0–5                         | _                |

# **Animal community**

This site has very little grazing value for reindeer. Winter forage is low quality and lyme grass is not selected by

reindeer and seldom utilized. The site is frequently used for cover from storm winds during winter and for an insect relief area during summer where reindeer take advantage of offshore breezes. This site is generally available for use as a resting area and is one of the more snow free sites in the area.

#### Recreational uses

Because of the rolling terrain and sandy soils, this site is sometimes used by four wheeler enthusiasts. This site's vegetation does not hold up well to four wheeler traffic, however, and when the soil is exposed the area is succeptible to wind erosion and blow outs.

# **Wood products**

Not applicable

# Other products

The lyme grass produced on this site is tall and stout. It has the potential to be used for weaving baskets or other products.

### **Contributors**

**David Swanson** 

# Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

| Author(s)/participant(s)                    |                   |
|---------------------------------------------|-------------------|
| Contact for lead author                     |                   |
| Date                                        |                   |
| Approved by                                 |                   |
| Approval date                               |                   |
| Composition (Indicators 10 and 12) based on | Annual Production |

| Indicators |                                                          |
|------------|----------------------------------------------------------|
| 1.         | Number and extent of rills:                              |
| 2.         | Presence of water flow patterns:                         |
| 3.         | Number and height of erosional pedestals or terracettes: |

4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):

| 5.  | Number of gullies and erosion associated with gullies:                                                                                                                                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.  | Extent of wind scoured, blowouts and/or depositional areas:                                                                                                                                                    |
| 7.  | Amount of litter movement (describe size and distance expected to travel):                                                                                                                                     |
| 8.  | Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):                                                                                      |
| 9.  | Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):                                                                                                          |
| 10. | Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:                                                                |
| 11. | Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):                                                                   |
| 12. | Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to): |
|     | Dominant:                                                                                                                                                                                                      |
|     | Sub-dominant:                                                                                                                                                                                                  |
|     | Other:                                                                                                                                                                                                         |
|     | Additional:                                                                                                                                                                                                    |
| 13. | Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):                                                                                         |
| 14. | Average percent litter cover (%) and depth ( in):                                                                                                                                                              |
| 15. | Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):                                                                                           |
|     |                                                                                                                                                                                                                |

| 16. | Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17. | Perennial plant reproductive capability:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |