

Ecological site R226XY060AK Sedge Meadow (Lowland) (AK653 St Paul Island)

Accessed: 05/17/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occupies coastal and inland areas on the west coast of St. Paul Island, on gently sloping plains and uplands slopes.

Table 2. Representative physiographic features

Landforms	(1) Plain
Elevation	18–61 m
Slope	6–15%

Climatic features

Table 3. Representative climatic features

Frost-free period (average)	120 days	
Freeze-free period (average)	100 days	
Precipitation total (average)	610 mm	

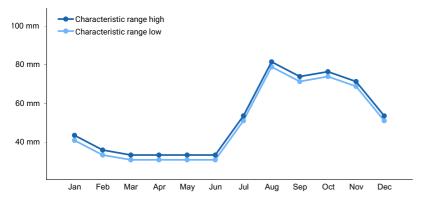


Figure 1. Monthly precipitation range

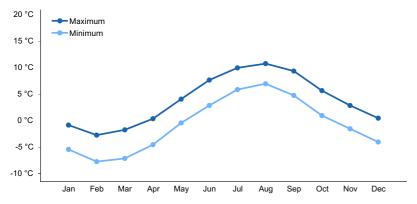


Figure 2. Monthly average minimum and maximum temperature

Influencing water features

Soil features

Soils are moderately deep and moderately well to well drained. Textures are fine to medium and soil pH is strongly to moderately acid. Runoff is low to medium and permeability is moderately slow to moderately rapid.

Table 4. Representative soil features

Surface texture	(1) Very cobbly silt loam (2) Medial
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained
Permeability class	Moderately slow to moderately rapid
Soil depth	51–102 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	24.13–24.64 cm
Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	5.1–6
Subsurface fragment volume <=3" (Depth not specified)	0%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

State and transition model

Ecosystem states

Carex podocarpa/Salix cyclophylla

State 1 submodel, plant communities

1.1. Carex podocarpa/Salix cyclophylla

State 1 Carex podocarpa/Salix cyclophylla

Community 1.1 Carex podocarpa/Salix cyclophylla

Sedges and grasses make up about 45% of the composition. Forbs make up 30% and shrubs 25%. Total annual vascular herbage production is 1610 pounds/acre.

Additional community tables

Table 5. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Shrub	/Vine	•			
1				392–448	
	oval-leaf willow	SAOVC	Salix ovalifolia var. cyclophylla	207–219	_
	netleaf willow	SARE2	Salix reticulata	101–106	_
	arctic willow	SAAR27	Salix arctica	62–73	_
	black crowberry	EMNI	Empetrum nigrum	34–39	_
Grass	/Grasslike				
1				841–869	
	shortstalk sedge	CAPO	Carex podocarpa	219–230	_
	sedge	CAREX	Carex	202–224	_
	Bering's tufted hairgrass	DEBE2	Deschampsia beringensis	78–90	_
	bluegrass	POA	Poa	67–78	_
	showy sedge	CASP5	Carex spectabilis	50–62	_
	red fescue	FERU2	Festuca rubra	34–39	_
	spike trisetum	TRSP2	Trisetum spicatum	22–34	_
	alpine timothy	PHAL2	Phleum alpinum	17–28	_
	Alaska fescue	FEBR2	Festuca brevissima	6–17	_
	Kentucky bluegrass	POPR	Poa pratensis	6–17	_
	curved woodrush	LUAR5	Luzula arcuata	6–17	

	Aleutian wormwood	ARAL6	Artemisia aleutica	11–1/	-
	Alaska curved woodrush	LUARU	Luzula arcuata ssp. unalaschcensis	0–6	-
	common woodrush	LUMU2	Luzula multiflora	0–6	_
	woodrush	LUZUL	Luzula	0–6	_
	alpine fescue	FEBR	Festuca brachyphylla	0–6	_
Forb					
1				504–560	
	Nootka lupine	LUNO	Lupinus nootkatensis	67–78	_
	seacoast angelica	ANLU	Angelica lucida	62–73	_
	captiate valerian	VACA3	Valeriana capitata	56–62	_
	boreal yarrow	ACMIB	Achillea millefolium var. borealis	50–62	_
	Tilesius' wormwood	ARTI	Artemisia tilesii	34–39	_
	boreal yarrow	ACMIB	Achillea millefolium var. borealis	17–28	_
	Lehmann's rockjasmine	ANCHL	Androsace chamaejasme ssp. lehmanniana	17–28	-
	weaselsnout	LAGL2	Lagotis glauca	22–28	_
	field horsetail	EQAR	Equisetum arvense	6–17	_
	Aleutian violet	VILA6	Viola langsdorffii	6–17	_
	mountain harebell	CALA7	Campanula lasiocarpa	6–17	_
	boreal sagebrush	ARAR9	Artemisia arctica	0–11	_
	larkspurleaf monkshood	ACDEP	Aconitum delphiniifolium ssp. paradoxum	0–11	_
	arctic stitchwort	MIAR3	Minuartia arctica	6–11	_
	arctic sweet coltsfoot	PEFR5	Petasites frigidus	6–11	_
	heartleaf saxifrage	SANEN	Saxifraga nelsoniana ssp. nelsoniana	0–11	_
	tall Jacob's-ladder	POAC	Polemonium acutiflorum	3–9	_
	sulphur buttercup	RASU2	Ranunculus sulphureus	2–9	_
	arctic raspberry	RUAR	Rubus arcticus	0–6	_
	arctic raspberry	RUARS	Rubus arcticus ssp. stellatus	0–6	_
	stiffstem saxifrage	SAHI5	Saxifraga hieraciifolia	0–6	
	sudetic lousewort	PESU	Pedicularis sudetica	0–6	
	whorled lousewort	PEVE	Pedicularis verticillata	0–6	
	Bering chickweed	CEBE2	Cerastium beeringianum	0–6	
	Bering chickweed	CEBEG3	Cerastium beeringianum ssp. beeringianum var. grandiflorum	0–6	
	Alaska springbeauty	CLSA2	Claytonia sarmentosa	0–6	_
	larkspurleaf monkshood	ACDEC	Aconitum delphiniifolium ssp. chamissonianum	0–6	_
	common dandelion	TAOFC	Taraxacum officinale ssp. ceratophorum	0–2	_
	arctic starflower	TREUA	Trientalis europaea ssp. arctica	0–2	_
	dandelion	TARAX	Taraxacum	0–1	_
	alpine bistort	POVI3	Polygonum viviparum	0–1	

	umbel bittercress	CAOLK	Cardamine oligosperma var. kamtschatica	0–1	_
	villous cinquefoil	POVI4	Potentilla villosa	I	_
	moss campion	SIAC	Silene acaulis	I	_
	common chickweed	STME2	Stellaria media	_	_
Liche	Lichen				
1				0–6	
	whiteworm lichen	THAMN3	Thamnolia	0–2	_
	whiteworm lichen	THSU60	Thamnolia subuliformis	0–2	_
	lung lichen	LOLI60	Lobaria linita	0–1	_

Animal community

Sedges and shrubs both provide high quality forage during both the winter and spring seasons.

Contributors

Swanson

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1.	Number and extent of rills:
2.	Presence of water flow patterns:
3.	Number and height of erosional pedestals or terracettes:

4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):

5.	Number of gullies and erosion associated with gullies:
6.	Extent of wind scoured, blowouts and/or depositional areas:
7.	Amount of litter movement (describe size and distance expected to travel):
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant:
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
14.	Average percent litter cover (%) and depth (in):
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize

degraded states and have the potential to become a dominant or co-dominant species on the ecological site if

	their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
7.	Perennial plant reproductive capability: