

Ecological site R230XY610AK

Boreal Scrub Silty Frozen Drainages

Last updated: 6/11/2025
Accessed: 01/17/2026

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 230X—Yukon-Kuskokwim Highlands

The Yukon-Kuskokwim Highlands (MLRA 230X) include the most western parts of Interior Alaska (Land Resource Region X2) and have a continental climate. MLRA 230X is approximately 42,300 square miles spread across mountain, hills, and valleys. Flood plain systems are common. The watershed drains into the Bering Sea to the west and Bristol Bay to the southwest. Major rivers include the Yukon, Innoko, Kuskokwim, Mulchatna, and Nushagak Rivers. This sparsely populated area is mostly undeveloped wildland. Residents use this remote area primarily for subsistence hunting, fishing, and gathering. Villages are primarily located along rivers along the MLRA 230X boundary and include Greyling, Nulato, and Koyukuk. Federally managed lands in the MLRA include parts of Innoko, Nowitna, and Koyukuk National Wildlife Refuges.

Geology and Soils

The Yukon-Kuskokwim Highlands MLRA was mostly unglaciated during the Pleistocene. Glaciers were limited to the Lime Hills in the southeast. Glacial moraines and drift are evident in areas of past glacial activity. Unglaciated upland areas are covered with colluvium and slope alluvium originating from bedrock. Loess deposits cover gentle sloping hills and footslopes of mountains near major rivers. Bedrock material is primarily sedimentary rocks with intrusive volcanic rock (USDA, 2022).

This MLRA is in the zone of discontinuous permafrost. Permafrost is most common in finely textured soils on terraces, gently sloping hills, and cold mountain footslopes. It is typically absent from flood plains and mountain backslopes. Across the MLRA, permafrost presence decreases as proximity to the Yukon-Kuskokwim delta increases.

The dominant soil orders are Gelisols, Entisols, Inceptisols, and Spodosols. Gelisols support shallow to deep permafrost and often have a perched water table for at least part of the growing season. Inceptisols, Spodosols, and Entisols lack permafrost. Two important factors that prevent permafrost aggradation are groundwater connectivity and thick bands of sandy and/or gravelly soil horizons. Inceptisols have minimal development and are common on alpine scrublands and high flood plains. Entisols are common on mountain backslopes and scoured flood plains. Spodosols support a spodic soil horizon and are common in the acidic soils underlying spruce forests and ericaceous shrublands. Non-soil areas such as rock outcrops, rubble lands and beaches make up approximately ten percent of the MLRA surface.

Climate

The Yukon-Kuskokwim Highlands MLRA has short, warm summers and cold, long winters. Mean annual precipitation is 10 to 15 inches at low elevations and increases to 20 to 40 inches at higher elevations (USDA, 2022). Annual snowfall is between 80 and 100 inches. Mean annual temperatures ranges from 25 to 32 degrees F (SNAP, 2014a; SNAP, 2014b).

Vegetation

Vegetation is mainly influenced by site and soil characteristics such as temperature-degree days, exposure, soil depth, and soil hydrology. Dwarf scrublands are prevalent on shallow soils on convex slopes and in the alpine. Mesic, lowland slopes are a mix of forests and shrublands of alder, willow, and ericaceous shrubs. Cold slopes generally support black spruce, while warm slopes support white spruce. Valley bottoms and steep slopes support a deciduous forest. Tussock tundra is associated with wet soils underlain by shallow permafrost and is ubiquitous across the lower footslopes of mountains and the coastal plain (USDA, 2022).

Fire

Fire is a major disturbance across the Yukon-Kuskokwim Highlands. Low severity fires destroy the canopy but leave the organic mat and rootstock mostly undisturbed. The vegetative community progresses directly back to a forest. Severe forest fires are stand replacement events. Post-first communities typically pass through an herbaceous meadow community before ericaceous shrubs, birch, and willows colonize. Drier soils may support a deciduous aspen or birch forest, while moist soils support cottonwoods and spruce. On all forest and woodland ecological sites, post-fire succession leads to a relatively rapid accumulation of organic matter and mosses on the surface. This accumulation results in decreases in soil temperature, biologic activity, and nutrient availability and a gradual decrease in site productivity.

LRU notes

MLRA 230X contains three life zones defined by the physiological limits of plant communities along an elevational gradient. The boreal life zone is the elevational band where forest communities dominate. Non-forested areas in the boreal life zone are often hydrologically driven, and are either too wet (i.e., bogs) or too dry (i.e., river bluffs) to support forest communities. Subalpine and alpine vegetation dominates at higher elevations. The subalpine zone is a transitional band between the boreal and the alpine life zones, and is characterized by sparse, stunted trees. Shrub height can be over four feet. Trees are absent from the alpine, and all shrubs are dwarf or prostrate. In general, the boreal life zone occurs below 1,200 feet; the subalpine life zone occurs between 1,200 and 1,600 feet; and the alpine life zone occurs above 1,600 feet.

Within each life zone, there are plant assemblages associated with cold and warm slopes. Slope temperature is a factor of slope steepness, aspect, and shading from surrounding ridges and mountains. Warm slopes occur on southeast to west aspects that are moderate to very steep and are not shaded by the surrounding landscape. Cold slopes occur on northwest to east facing slopes, occur in shaded slope positions, or occur in low-lying areas that are cold air sinks. Examples of shaded positions include head slopes, low relief backslopes of hills, and the base of hills and mountains shaded by adjacent mountain peaks. Warm boreal slopes have a cryic soil temperature regime and lack permafrost. White spruce forests are an indicator of warm boreal slopes. Cold boreal slope soils have a gelic soil temperature regime and commonly have permafrost. In this area, black spruce forests and woodlands are an indicator of cold boreal slopes.

Classification relationships

Alaska Vegetation Classification:

Closed tall scrub (I.A.3 - level III) / Closed tall shrub swamp (II.B.1.f - level IV)
(Viereck et al., 1992)

Circumboreal Vegetation Map:

Western North American Boreal Deciduous Shrub Swamp
(Jorgensen and Meidinger, 2015)

BioPhysical Settings:

7316240 – Western North American Boreal Deciduous Shrub Swamp
(Landfire, 2009)

Ecological site concept

Ecological Site characteristics:

- Occurs in the boreal life zone in drainages on hills and plains
- These very deep soils have permafrost at moderately deep depths
- Soils formed in alluvium and are capped with approximately 9-inches of organic material

- Soils flood and pond. These very poorly drained soils have a surface water table throughout the growing season
- The reference plant community is a tall willow scrubland with graminoids, forbs, and mosses dominating the understory
- Hydrologic influences support one community in the reference state

Associated sites

F230XY611AK	Boreal Forest Loamy Frozen Slopes Ecological site F230XY611AK describes black spruce forests on cold, forested slopes. Ecological site 610 occurs in slope drainages, which are interspersed among the black spruce forest.
F230XY612AK	Boreal Forest Loamy Slopes Ecological site F230XY612AK describes white spruce forest on warm slopes. Ecological site 610 occurs in slope drainages, which are interspersed among the white spruce forest.
R230XY620AK	Boreal Peat Frozen Flats Complex R230XY620AK describes the tussock tundra. Ecological site 610 describes frozen drainages that pass through the tussock tundra.

Similar sites

F230XY613AK	Boreal Forest Loamy Moist Slopes F230XY613AK and R230XY610AK share similar willow shrublands vegetation in the reference state. R230XY610 contains permafrost and a flooding regime that exclude trees that are common in F230XY613AK.
-------------	--

Table 1. Dominant plant species

Tree	Not specified
Shrub	(1) <i>Salix pulchra</i> (2) <i>Salix barclayi</i>
Herbaceous	(1) <i>Calamagrostis canadensis</i> (2) <i>Equisetum</i>

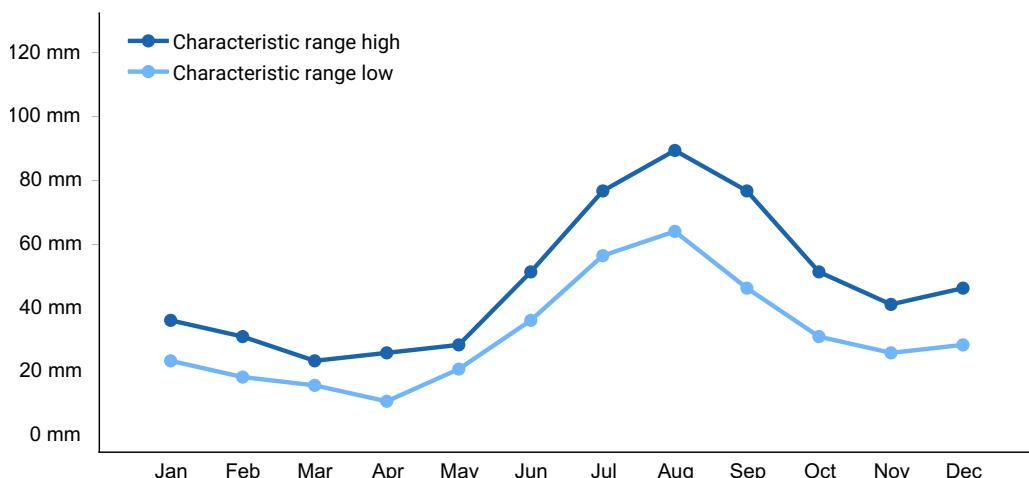
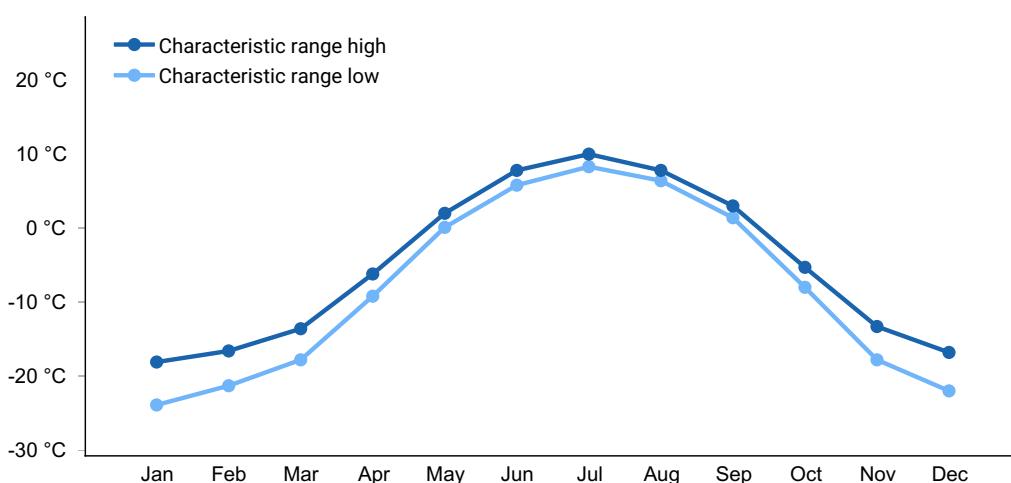
Physiographic features

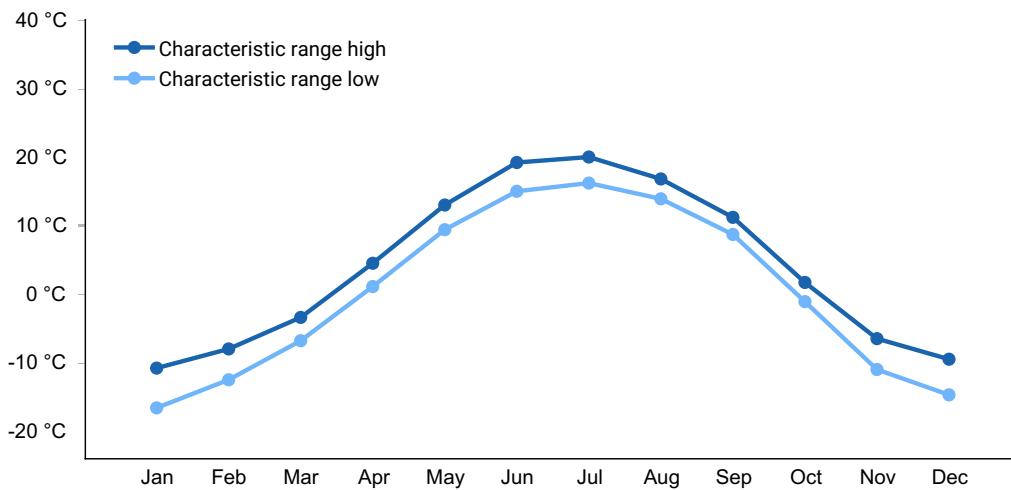
- This boreal ecological site occurs in drainages on hills and plains
- Elevation ranges between 100 and 1,200 feet above sea level
- Slope gradients are nearly level to gently sloped (0 to 2 percent)
- These drainages are on all aspects
- Flooding and ponding both occur. A water table is present at the soil surface throughout the growing season (May through September).

Table 2. Representative physiographic features

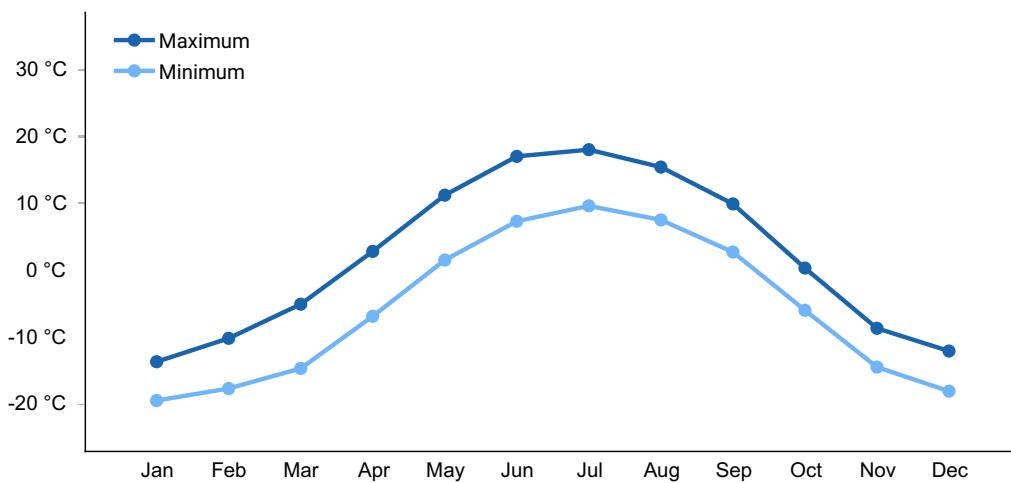
Slope shape across	(1) Linear (2) Concave
Slope shape up-down	(1) Linear
Hillslope profile	(1) Toeslope
Geomorphic position, hills	(1) Base Slope
Landforms	(1) Plains > Drainageway (2) Hills > Drainageway
Runoff class	Negligible to very low
Flooding duration	Long (7 to 30 days)
Flooding frequency	Frequent
Ponding duration	Long (7 to 30 days)
Ponding frequency	Frequent
Elevation	30–366 m
Slope	0–2%
Ponding depth	10–30 cm
Aspect	W, NW, N, NE, E, SE, S, SW

Table 3. Representative physiographic features (actual ranges)

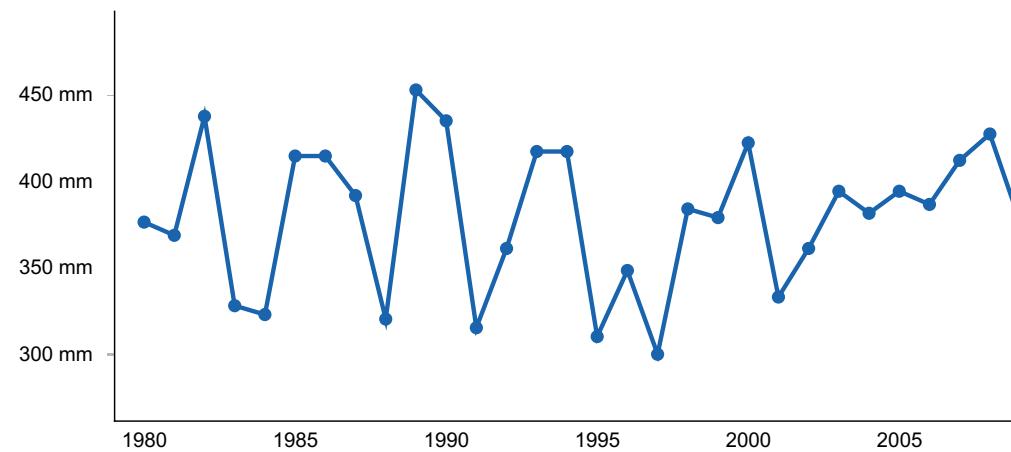


Runoff class	Negligible to high
Flooding duration	Brief (2 to 7 days) to long (7 to 30 days)
Flooding frequency	Occasional to frequent
Ponding duration	Long (7 to 30 days)
Ponding frequency	None to frequent
Elevation	30–610 m
Slope	0–22%
Ponding depth	Not specified


Climatic features

The Yukon-Kuskokwim Highlands MLRA has short, warm summers and long, cold winters. Mean annual temperature ranges from 25 to 32 degrees Fahrenheit, with temperatures typically below freezing from October through April. June through August are the warmest months of the year and constitute the heart of the growing season. Approximately 60 percent of total annual precipitation occurs from June through September (PRISM, 2018; SNAP, 2014a). Across the MLRA, snowfall ranges from 80 to 100 inches (USDA, 2022).


Table 4. Representative climatic features

Frost-free period (characteristic range)	75-95 days
Freeze-free period (characteristic range)	65-85 days
Precipitation total (characteristic range)	330-508 mm
Frost-free period (actual range)	60-110 days
Freeze-free period (actual range)	50-100 days
Precipitation total (actual range)	254-1,016 mm
Frost-free period (average)	80 days
Freeze-free period (average)	70 days
Precipitation total (average)	381 mm


Figure 1. Monthly precipitation range**Figure 2. Monthly minimum temperature range**

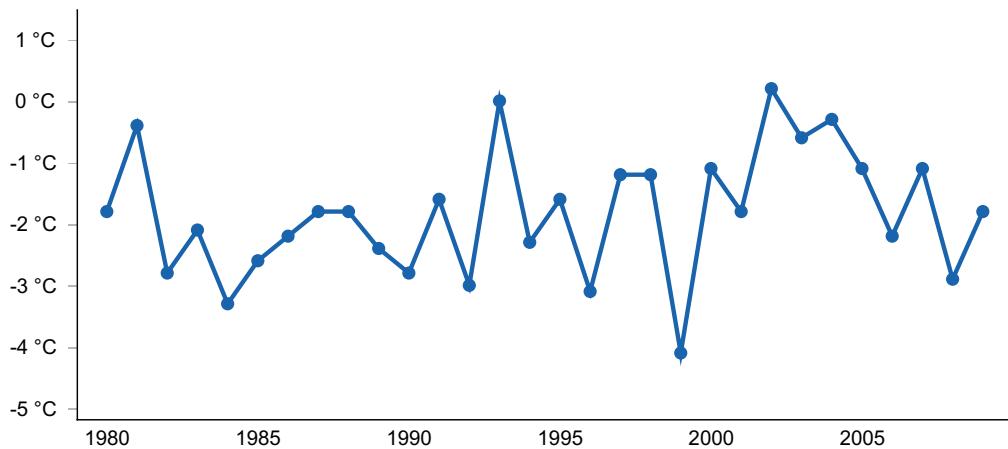

Figure 3. Monthly maximum temperature range

Figure 4. Monthly average minimum and maximum temperature

Figure 5. Annual precipitation pattern

Figure 6. Annual average temperature pattern

Influencing water features

In the associated drainageways, overbank flow from the channel and subsurface hydraulic connections between the stream and adjacent wetlands are the main sources of water (Smith et al. 1995).

Depth to the water table may decrease following summer storm events or spring snowmelt and increase during extended dry periods.

Wetland description

This site is classified as a riverine wetland under the Hydrogeomorphic (HGM) classification system (Smith et al. 1995; USDA-NRCS 2008).

Soil features

- Common Gelisol great groups are Historthels (Soil Survey Staff, 2013)
- Soils formed in alluvium
- Soil surface texture is mucky peat or stratified silty loam over coarse sand.
- Rock fragments do not occur on the soil surface
- Soils have a thick, 9-inch organic cap.
- While soils are very deep, permafrost occurs between 33 and 47 inches
- Subsurface rock fragments are absent
- Soil pH is very strongly to moderately acidic.
- Soils are very poorly drained

Table 5. Representative soil features

Parent material	(1) Alluvium
-----------------	--------------

Surface texture	(1) Mucky peat (2) Silt loam (3) Coarse sand
Drainage class	Very poorly drained
Permeability class	Moderate
Depth to restrictive layer	84–119 cm
Soil depth	152 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	21.59–29.97 cm
Soil reaction (1:1 water) (0-25.4cm)	4.5–5.3
Subsurface fragment volume <=3" (0-152.4cm)	0%
Subsurface fragment volume >3" (0-152.4cm)	0%

Table 6. Representative soil features (actual values)

Drainage class	Poorly drained to very poorly drained
Permeability class	Moderate to moderately rapid
Depth to restrictive layer	84–152 cm
Soil depth	Not specified
Surface fragment cover <=3"	0–5%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	Not specified
Soil reaction (1:1 water) (0-25.4cm)	Not specified
Subsurface fragment volume <=3" (0-152.4cm)	0–37%
Subsurface fragment volume >3" (0-152.4cm)	0–1%

Ecological dynamics

Site and soil hydrology, especially the stress caused by ponding (Vartapetian and Jackson, 1997), shape the vegetative community. Vegetation is primarily restricted to

facultative-to-facultative wet wetland species.

There is one community in the reference state. It is hydrologically driven and will remain in place as long as hydrologic conditions continue (Landfire, 2009). Site hydrology is partially dependent upon the presence of permafrost, which is a root-restrictive and water-perching layer. This ecological site floods and ponds. Flooding is a low energy event and does not scour the soil surface.

This ecological site rarely burns. Drainages generally act as fire breaks on the landscape. However, this ecological site may burn in instances of intense drought and severe fire. Many of the species in the reference plant community are fire adaptive and fire resilient (Fryer, 2001; Uchytil, 1991). It is hypothesized that the reference plant community would immediately develop post-fire (Landfire, 2009).

The information in this Ecological Dynamics section, including the state-and-transition model (STM), was developed based on current field data, professional experience, and a review of the scientific literature. As a result, all possible scenarios or plant species may not be included. Key indicator plant species, disturbances, and ecological processes are described to inform land management decisions.

State and transition model

Ecosystem states

1. Reference State

State 1 submodel, plant communities

1.1. *Salix pulchra* -
Salix barclayi /
Calamagrostis canadensis /
Equisetum spp.

State 1 Reference State

The reference state describes one distinct vegetative community in boreal drainages. Flooding is a frequent disturbance coinciding with periods of peak snow melt. Flooding does not result in a distinct, post-disturbance community. Site hydrology is the major influence on community composition and dynamics on this ecological site. The reference state is developed and characterized using available vegetation models, including Landfire BpS and the Alaska vegetation classification system (Landfire, 2009; Viereck et al., 1992).

Dominant plant species

- tealeaf willow (*Salix pulchra*), shrub
- Barclay's willow (*Salix barclayi*), shrub
- willow (*Salix*), shrub
- arctic raspberry (*Rubus arcticus*), shrub
- bluejoint (*Calamagrostis canadensis*), grass
- horsetail (*Equisetum*), other herbaceous
- tall Jacob's-ladder (*Polemonium acutiflorum*), other herbaceous
- purple marshlocks (*Comarum palustre*), other herbaceous

Community 1.1

Salix pulchra - Salix barclay / Calamagrostis canadensis / Equisetum spp.

The reference plant community is a closed tall scrubland (Viereck et al. 1992). The dominant vegetative strata are tall shrubs, medium shrubs, tall graminoids, and medium forbs. The overstory is a mix of two or more willows. Tealeaf willow, Barclay's willow, grayleaf willow, and Richardson's willow are among the most common overstory species. Trees may be present. White spruce may encroach on drier soils or microtopographic highs. Black spruce may be present in drainages on north facing mountain slopes. The soil surface is primarily covered with herbaceous litter, mosses, and rock fragments near the active drainage. The binomial and vernacular name of common plants are listed in the dominant plant species table.

Dominant plant species

- tealeaf willow (*Salix pulchra*), shrub
- Barclay's willow (*Salix barclayi*), shrub
- grayleaf willow (*Salix glauca*), shrub
- Richardson's willow (*Salix richardsonii*), shrub
- willow (*Salix*), shrub
- arctic raspberry (*Rubus arcticus*), shrub
- dwarf birch (*Betula nana*), shrub
- beauverd spirea (*Spiraea stevenii*), shrub
- bluejoint (*Calamagrostis canadensis*), grass
- horsetail (*Equisetum*), other herbaceous
- tall Jacob's-ladder (*Polemonium acutiflorum*), other herbaceous
- purple marshlocks (*Comarum palustre*), other herbaceous
- violet (*Viola*), other herbaceous
- ledge stonecrop (*Rhodiola integrifolia*), other herbaceous

Additional community tables

Animal community

not available

Hydrological functions

not available

Recreational uses

not available

Wood products

not available

Other products

not available

Other information

not available

Inventory data references

Vegetative communities and transitions are described using existing models and expert knowledge. There are no vegetation inventory data points in NASIS associated with this ecological site.

External model data sources:

The Alaska-Yukon Region of the Circumboreal Vegetation Map (CBVM) (Jorgensen and Meidinger, 2015)

LANDFIRE Biophysical Settings Models (Landfire, 2009)

Viereck, L.A., C.T. Dyrness, A.R. Batten, and K.J. Wenzlick. 1992. The Alaska vegetation classification. Gen. Tech. Rep. PNW-GTR-286. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 278 p. (Viereck et al., 1992)

References

Viereck, L.A., C. T. Dyrness, A. R. Batten, and K. J. Wenzlick. 1992. The Alaska vegetation classification. U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station General Technical Report PNW-GTR-286..

Other references

Brinson, M.M. 1993. A hydrogeomorphic classification for wetlands. Technical Report WRP-DE-4, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Fryer, Janet L. 2011. *Alnus incana*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: <https://www.fs.usda.gov/database/feis/plants/tree/alminc/all.html> [2025, March 26].

Jorgensen, T., and D. Meidinger. 2015. The Alaska Yukon Region of the Circumboreal Vegetation Map (CBVM). CAFF Strategies Series Report. Conservation of Arctic Flora and Fauna, Akureyri, Iceland. ISBN: 978-9935-431-48-6.

Landfire. 2009. Biophysical Setting 7316240 – Western North American Boreal Deciduous Shrub Swamp. In: LANDFIRE Biophysical Setting Model: Map zone 73, [Online]. In: Vegetation Dynamics Models. In: LANDFIRE. Washington, DC: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory; U.S. Geological Survey; Arlington, VA: The Nature Conservancy (Producers). Available: <https://www.landfire.gov/vegetation/bps>. Accessed March 18, 2025

PRISM Climate Group (PRISM). 2018. “Alaska – average monthly and annual precipitation and minimum, maximum, and mean temperature for the period 1981-2010.” Oregon State University, Corvallis, Oregon. <https://prism.oregonstate.edu/projects/alaska.php>. Accessed Sept 17, 2024.

Scenarios network for Alaska and arctic planning (SNAP). 2014. “Historical Monthly Temperature – 1km, 1901-2009”. <http://ckan.snap.uaf.edu/dataset/>. Accessed Sept 17, 2024.

Scenarios network for Alaska and arctic planning (SNAP). 2014. “Historical monthly and derived precipitation products downscaled from CRU TS data via the delta methods – 2km, 1901-2009”. <http://ckan.snap.uaf.edu/dataset/>. Accessed Sept 17, 2024.

Soil Survey Staff. 2013. Simplified Guide to Soil Taxonomy. USDA-Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.

Uchytil, Ronald J. 1991. *Salix pulchra*. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: <https://www.fs.fed.us/database/feis/plants/shrub/salpul/all.html>. Accessed March 26, 2025.

United States Department of Agriculture, Natural Resources Conservation Service. 2022. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

Vartapetian, B., and M. Jackson. 1997. Plant Adaptations to Anaerobic Stress. *Annals of Botany*. 79. 10.1093/oxfordjournals.aob.a010303.

Western Regional Climate Center (WRCC). 2021. Climate of Alaska. Retrieved from https://wrcc.dri.edu/Climate/narrative_ak.php. Accessed November 15, 2024.

Western Regional Climate Center (WRCC). 2025. “McGrath WB Airport, Alaska ‘Freeze Free’ Season Probabilities.” <https://wrcc.dri.edu/cgi-bin/cliTFrezD.pl?akmcgr>. Accessed Mar 6, 2025.

Contributors

Phil Barber
Blaine Spellman
Marji Patz
Michael Singer

Acknowledgments

This ecological site description (ESD) fulfills the requirements of the Provisional Ecological Site (PES) national initiative. This ESD is published to fit current site-soil correlations as they are currently mapped and understood. Further data collection may provide the information to update this ESD from the provisional level to the approved level.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
--------------------------	--

Contact for lead author	
Date	01/17/2026
Approved by	Blaine Spellman
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1. **Number and extent of rills:**

2. **Presence of water flow patterns:**

3. **Number and height of erosional pedestals or terracettes:**

4. **Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):**

5. **Number of gullies and erosion associated with gullies:**

6. **Extent of wind scoured, blowouts and/or depositional areas:**

7. **Amount of litter movement (describe size and distance expected to travel):**

8. **Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):**

9. **Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):**

10. **Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:**

11. **Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):**

12. **Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):**

Dominant:

Sub-dominant:

Other:

Additional:

13. **Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):**

14. **Average percent litter cover (%) and depth (in):**

15. **Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):**

16. **Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought**

or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:

17. Perennial plant reproductive capability:
