Ecological site group R014XG910CA Dry Clayey Terrace

Last updated: 09/07/2023 Accessed: 05/05/2024

Key Characteristics

None specified

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Physiography

This ESG is very similar to Dry Clayey Basins and is associated with nearly level flood basins in intermountain valleys and large valleys, basins, flat terraces, and flood plains where water and smectitic clay sediments are deposited with slopes ranging from 0 to 2 percent at elevations from 10 to 1800 feet.

Climate

The climate is dry subhumid mesothermal with hot dry summers and cool moist winters. Mean annual precipitation ranges from 10 to 16 inches.

Soil features

The soils of this ESG include both very deep, poorly to very poorly drained sodic soils formed in alluvium from mixed rock sources and very deep, moderately well and well drained soils that formed in alluvium from mixed rock sources.

Representative soils include:

Cropley silty clay loams Willows drained clays

Vegetation dynamics

This ESG covers the areas of the valleys in MLRA 14 that were at one time part of a vast complex of marshes, tidal flats, estuaries, wetlands and wet meadows. The urbanized landscape in the valleys within this MLRA that exists today makes it difficult to imagine the natural landscape prior to human development.

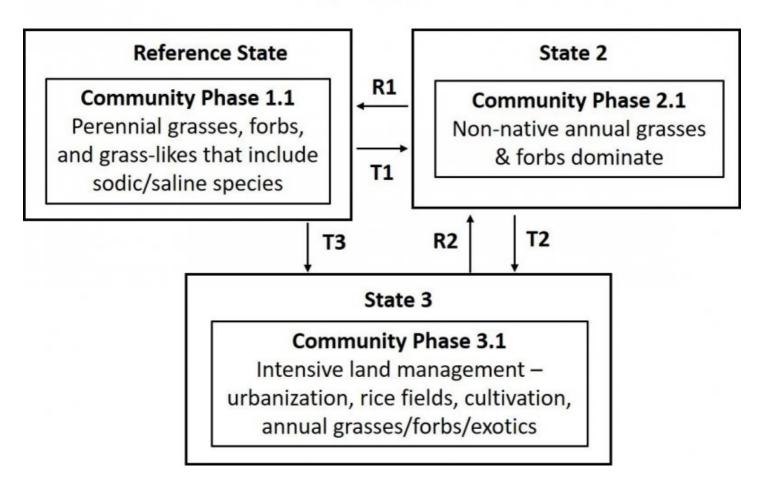
These clayey terracess were likely interrelated to the fine-textured depressional and deposition areas and isolated oxbows that were created from the network of freshwater and salt marshes, rivers and streams that ran through these valleys as their seasonal and tidally influenced flood waters stretched across the floodplains and terraces in spring and deposited sediment as they receded during summer. Once the area began to be settled, many of these water dominated ecosystems were drained, leveed, cleared for crops and other agriculture, and urbanized.

As this landscape was de-watered and houses and agriculture took over, the water table for many of these habitats moved deeper and deeper, creating soils that would no longer offer the available soil moisture for many of the plants that had evolved with the hydrologic function of the natural system that no longer existed. These clayey basins may have remained wetter than many of the surrounding soils, due to their high water-holding capacity and their valley bottom and terrace locations on the landscape. The clays of this ESG are high shrink-swell clays that dry out in the summer when the water table recedes and develop cracks and low soil pores spaces making them less hospitable

for many of the native perennial grasses that existed within the drier surrounding grasslands.

Historically, this site may have looked similar to the CWHR wet meadow classification, however with the introduction of non-native annual grasses and the impacts from fragmentation, continued de-watering, and human alterations such as homes and roads, this site now reflects a lower producing, dry, annual grassland.

Major Land Resource Area


MLRA 014X Central California Coastal Valleys

Stage

Provisional

State and transition model

Dry Clayey Terraces

Reference State

This ESG represents the closed-basin and moderately drained grass and grass-like dominated wet meadows. The single most important characteristic of a wet meadow is its hydrology. Seasonality and reliability of yearly water inflows and outflows largely determine the vegetational stability of Wet Meadows. Therefore, Wet Meadow habitats exist indefinitely unless the hydrologic regimes are altered. Wet meadows occur where water is at or near the surface most of the growing season, following spring runoff. Hydrologically, they occupy lotic and sunken concave sites. This ESG gets its main input flow (other than precipitation) from upstream sources; at least early in the growing season, water flows across them at depths of 10 to 20 cm (4-8 in). Downstream runoff is the principal output flow. They are in topographic basins but have a slight slope, which permits drainage of surface water. Percolation is nil due to the saturated or slowly permeable nature of underlying materials. Sunken concave sites also receive water input from upstream sources, but evapotranspiration is the main output flow. Percolation is slowed by the heavy-textured clay soils, and the sunken concave sites may dry to considerable depth by fall.

Reference State Community Phase

Community 1.1 This reference community phase is dominated by a mixture of perennial grasses and water obligate and facultative wet grass-likes and forbs that vary depending on what the water source is and where the site is located across the landscape.

State 2 Community Phase

Community 2.1 This community represents the mix of non-native annual grasses and forbs that are able to withstand the extremely dry, shrink-swell clay soils during the warm summer months. There may be some *Juncus spp.* and *Distichlis spicata* intermixed, depending on the soil type and location on the landscape that allows for longer water inundation and saline conditions.

State 3 Community Phase

Community 3.1 - This community phase represents all the varied land uses that significantly alter this ecological site. This is an extremely varied community phase that includes all types of alterations that so significantly alter the ecological site that it is permanently changed and no longer has typical or even representative ecological dynamics.

Transitions

T1 This transition is caused by de-watering due to urbanization, leeves, channelized rivers, and irrigation needs that allowed for the invasion of non-native annual plants and saltgrass.

R1 This restoration pathway occurs when significant time and money inputs are focused on addressing the hydrologic functions that existed historically in order to return the water table that once supported perennial grasses and grass-likes.

T2 This transition is caused by significant human alterations that remove essential topsoil horizons, alter hydrologic functions, and/or add significant inputs that change soil chemistry and soil properties for housing developments, urban infrastructures or intensive cropping systems and force this ecological site over a threshold and change the function and structure of this site in extensive ways.

R2 This restoration pathway occurs only when significant time and money inputs are focused on returning ecological function and hydrology.

T3 This transition is caused by significant human alterations that entirely removes essential topsoil horizons, alters hydrologic functions, and/or add significant inputs that change soil chemistry and soil properties for housing developments, urban infrastructures or intensive cropping systems and force this ESG over a threshold and change the function and structure of this site in extensive ways.

Citations