Loamy Bottom
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T2A More details
- Transition T3A More details
- Transition T3B More details
- Transition T4A More details
- Restoration pathway R5A More details
- Transition T5A More details
- Restoration pathway R5B More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The reference state contains plant communities presumed to occur prior to the introduction of nonnative plants, livestock grazing, and other modern disturbances. Basin big sagebrush dominance depends on time since fire, insect outbreak or extended drought. In both communities the grasses are the dominant component.
It is a very diverse community with 10-20 or more species present throughout the site. This diversity adds to a site’s stability. Often, decreasing diversity can be one of the first indicators of site deterioration. Key species that indicate a pristine and functioning system include. Species that often act as increasers with disturbance and indicate a deteriorating site include: basin big sagebrush, white sagebrush, squirreltail, foxtail barley, broom snakeweed, and rabbitbrush. This site has less than 20% big sagebrush canopy cover. The percentage of shrubs in this state will fluctuate depending on frequency and intensity of disturbances such as fire, or grazing. Typically the sage brush increases until fire is introduced to the system. Following the fire, rabbitbrush and annual forbs will increase creating a rabbitbrush phase that will be phased out as perennial grasses and sagebrush reestablish themselves.
The following is from the 1982 range site:
If ecological retrogression is cattle-induced, desirable grass species will decrease. However, if retrogression is sheep-induced, desirable forbs, shrubs and grasses will be reduced. Deterioration of the site due to overgrazing by cattle will decrease western wheatgrass, muttongrass, Indian ricegrass, New Mexico feathergrass, and bottlebrush squirreltail. Further deterioration by overgrazing will increase basin big sagebrush, rabitbrush, broom snakeweed, plains prickly pear and foxtail barley. With severe depletion of the natural grasses, species such as cheatgrass, Russian thistle, Italian cocklebur, and 5-stem tamarisk will invade the site.
Submodel
Description
The current potential state is similar to the reference state, however invasive species are present in all community phases. This state is generally dominated by big sagebrush, however depending on disturbance history, native grasses, forbs, or other shrubs may dominate the site. Primary disturbance mechanisms include fire, native herbivore grazing, insect outbreak, domestic livestock grazing and surface disturbances, (i.e. road and pipeline development and off road vehicle (OHV) use). Timing of these disturbances dictates the ecological dynamics that occur. The current potential state is self-sustaining; but is losing resistance to change due to lower resistance to disturbances and lower resilience following disturbances. When disturbances occur, the rate of recovery is variable depending on severity.
The current potential state is similar in structure and function to the reference state, however invasive and non-natives species are present in all community phases. The current potential state is generally dominated by perennial grasses.
Submodel
Description
This state arises when there has been prolonged fire suppression along with heavy grazing and/or drought. Basin big sagebrush is now the dominant species contributing the majority production. The depleted understory state occurs when perennial grasses have been lost from the understory. Perennial forbs may also be reduced. This state is may not be capable of carrying a stand replacing fire that removes big sagebrush due to a reduction in fine fuels. If improper grazing continues to occur shrubs will continue to increase and perennial grasses will begin to be replaced by annuals such as cheatgrass.
The hydrologic function of this community is still intact throughout the entirety of the bottom. Meaning, there is no bench or entrenched/incised channel. The water has access to the entirety of the bottom for flooding and energy dissipation purposes. This state is a very unstable state at the edge of a very major threshold and this would be the latest time to treat the site, with the least amount of energy, and expect to restore it to the current potential plant community. Without treatment there is high probability of a transition to a greatly degraded state with a high flow event that could permanently alter the hydrologic function of the site. This state may return to the current potential state through prescribed fire or brush management by chemical or mechanical means followed by reseeding.
Upland site degradation is a huge influence in allowing the progression of the transition from a site with functioning hydrology and preferred plant communities to this highly unstable community. Uplands that develop dense, aged sagebrush stands with little understory dewater a bottom by increasing overland flow and evaporative loss and decreasing a site’s ability to capture and store water. The removal of grasses and herbaceous litter from the soil surface decreases the site’s ability to slow water and allow for infiltration. Thus, water that once could have been safely transported, infiltrated, stored and moved to the bottom at a later period is now added to the already erosive overland flow at the same time. Meaning, larger amounts of water and sediment are running onto the bottom more rapidly in a shorter period of time. These minor changes in the microclimate, especially on the periphery of the bottom, are enough to allow for the sagebrush to continue advancing into the bottom along with other obligate upland species and further perpetuating the drying.
Submodel
Description
This is a degraded state and the hydrology of this site has been altered. The plant community and surface debris are no longer capable of slowing runoff and dissipating the water’s erosive energy. In flow events, fine organic materials are not present to stabilize soil, slow water and allow infiltration. Instead, water from the uplands builds energy as it collects in the bottom and begins to form a channel. As the water becomes more channelized, the bottom becomes even less capable of dissipating the energy and channelization increases moving down the system and a head-cut start moving up the system.
This state has two fluctuating phases. Both phases have an entrenched channel where water has no access to the bottom floodplain and although vegetation in the channel may return to a community similar to the current potential (if not a little wetter), the majority of the bottom remains in the degraded sagebrush dominated state producing only a fraction of its original potential. The first community is the least stable with high levels of erosion occurring with any flow event. There is no vegetation on the sidewalls or the bottom of the channel. It has a distinctly V shaped channel profile that widens and deepens with every flow event. The second community is where healing is occurring and he bottom of the channel has become re-vegetated. The vegetation is similar to that of the current potential community with some exception. Since there is the same amount of water consolidated to a smaller area, the soils have a greater potential to show gleying and redoximorphic features that indicate low oxygen environments that are associated with the presence of a water table. Thus, plants that often inhabit the channel are those that have a greater tolerance for flooding. This means that often the amount of obligate and facultative wetland species are increased beyond that of the reference plant community. The channel vegetation helps to hold the channel in minor to moderate flooding events and prevent further degradation. Often sites in this phase develop U shaped profiles.
Submodel
Description
This community is a man-made community. To get to this state requires a lot of inputs and hard work, but it can be done. Time, energy and resources are needed to restore the water table to the floor of the bottom and not the bottom of the channel.
Submodel
Mechanism
This transition is from the native perennial warm and cool season grass understory in the reference state to a state that contains invasive species. Plant may include cheatgrass, annual mustards, thistles, knotweeds, and dandelion. Events include establishment of invasive plant species, intense continuous grazing of perennial grasses, prolonged drought, and/or surface disturbances, etc. However, invasive species such as cheatgrass have been known to invade intact perennial plant communities with little to no disturbance. Once invasive species are found in the plant community a threshold has been crossed.
Mechanism
This pathway occurs when perennial grasses are reduced in the understory due to improper grazing and/or drought during the growing period. With Basin big sagebrush increasing and sagebrush decadence increasing, cover changes in this communities can brought on by prolonged drought, lack of fire, and improper grazing use can create alterations in the plant community that can leave the soils at risk for erosion and alter the hydrological function. Also, lack of wet periods to drown out big sagebrush and increase completion from the shallower root grasses and forbs can cause this shift from State 2 to State 3 - sagebrush dominated. Few remnant plants may still persist under shrubs, but re-establishment and dominance by perennial grasses will not occur following a fire, or with the removal of grazing animals in the natural time frame. Nonnative species may co-dominate the understory.
Mechanism
The site has become unstable. This is a very quick transition. Due to the lack of soil protection large flow events quickly destabilize the site and it transitions to the state with altered hydrological function (4). Anything that further reduces ground cover, like improper grazing use and continued drought, has potential to quicken this transition. Fire suppression and lack of shrub management in decadent sagebrush uplands continue to promote altered hydrologic function and also aid in destabilizing the bottom. The lack of adequate herbaceous cover to dissipate water velocity and encourage infiltration result in the formation of gullies and head-cuts.
Mechanism
To restore the site to the current potential state extreme inputs are necessary. This transition is from a big sagebrush dominated state, to a state that has been seeded with introduced or native perennial grasses. High energy inputs are needed for this transition. Sagebrush will need to be removed with vegetation treatment techniques (I.e. chemical, mechanical, or fire) and introduced or native species that are adapted to the area and adapted to management needs have been seeded and become established. Proper grazing use by both domestic animal and wildlife needs to occur. Often successful on small scales over very long periods of time, large scale restoration projects are not often able to be fully restored. This pathway would require continued sedimentation, proper grazing use, and proper hydrologic contributions.
Management practices that restore upland community health and functioning are critical to restoring a sagebrush dominated bottom to the current potential state. Such practices can include shrub management, and reseeding. Erosion control structures may be necessary. This needs to be used in conjunction with proper grazing management. Several wet years in a row can also decrease big sagebrush, as big sagebrush does not like to have it roots in water for extended periods of time.
Mechanism
Returning to the current potential state will be time, resource, and energy intensive. The water table needs to be restored to the floor of the bottom and not the bottom of the channel. Often a large amount of dirt work, brush removal and the installation of check dams are required to reclaim the bottom community. Check dam structures are used in an attempt to stop head-cuts, slow water, and catch sediments all in hopes of raising both the channel and the water table to allow for flooding access to the entire bottom and returning the hydrologic function. Reclaiming these bottom sites, also, include fixing all the problems that initially contribute to the degradation, including management practices that improve the contributing upland communities. A bottom cannot be restored by only changing problems within the site itself. The bottom’s health and success in restoring the functioning is directly tied the health and function of the surrounding uplands.
Mechanism
This restorative pathway from the State 5 to the State 2 is very intensive. Often successful on small scales over very long periods of time, large scale restoration projects are not often able to be fully restored. This pathway would require continued sedimentation, proper grazing use, and proper hydrologic contributions. This community may reestablish the same hydrological function as in the reference state if the contributing upland sites provide the hydrologic contributions.
Mechanism
Sagebrush encroachment with increasing sagebrush decadence and cover in adjacent upland communities brought on by prolonged drought, lack of fire, and improper grazing use can create alterations in the plant community that can leave the soils at risk for erosion and alter the hydrological function.
Mechanism
This community becomes unstable, affects soil health and the hydrologic function as it is invaded by big sagebrush. The lack of adequate herbaceous cover to dissipate water velocity and encourage infiltration result in the formation of gullies and head-cuts.
This is a very quick transition. Due to the lack of soil protection large flow events quickly destabilize the site and it transitions to the state with altered hydrological function (3). Anything that further reduces ground cover, like improper grazing use and continued drought, has potential to quicken this transition. Fire suppression and lack of shrub management in decadent sagebrush uplands continue to promote altered hydrologic function and also aid in destabilizing the bottom.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.