Loamy Steep (LoStp) LRU 01 Subset B
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T1B More details
- Transition T1C More details
- Transition T1D More details
- Restoration pathway R2A More details
- Transition T2A More details
- Transition T2B More details
- Transition T2C More details
- Restoration pathway R3A More details
- Restoration pathway R3B More details
- Transition T3A More details
- Transition T3B More details
- Restoration pathway R4A More details
- Restoration pathway R4B More details
- Restoration pathway R4C More details
- Transition T4A More details
- Restoration pathway R5A More details
- Restoration pathway R5B More details
- Restoration pathway R5C More details
- Restoration pathway R5D More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The Reference State of this ecological site consists of two (2) known potential plant communities: the Mid-Statured Bunchgrass Community and the Mixed Bunchgrass Community. These are described below but are generally characterized by a mid-statured, cool-season grass community with limited shrub production. Community 1.1 is dominated by rough fescue, bluebunch wheatgrass, and green needlegrass. This community is considered the reference, while Community 1.2 is primarily bluebunch and needle and thread with rough fescue and Wyoming big sagebrush.
Submodel
Description
This state is characterized by having less than 20 percent rough fescue and bluebunch wheatgrass by dry weight. It is represented by two (2) communities that differ in the percent composition of needle and thread, production, and soil degradation. Production in this state can be similar to that in the Reference State (1). Some native plants tend to increase under prolonged drought and/or heavy grazing practices. A few of these species may include Idaho fescue, needle and thread, Sandberg bluegrass, scarlet globemallow, hairy goldenaster, and fringed sagewort.
Characteristics and indicators
Less than 20 percent bluebunch wheatgrass & rough fescue
Increase in short stature grasses
Increase in bare ground
Resilience management
Conservative grazing management, Integrated Pest Management, time
Submodel
Description
Degraded State lacks midstatured bunchgrasses. Sandberg bluegrass, western wheatgrass, and prairie Junegrass are dominant grasses, while increaser shrubs nearly replace larger shrub species. Remaining larger shrub species are heavily hedged. This is very likely a terminal state (e.g., restoration will likely be impossible or unsuccessful and require major energy inputs to be marginally successful).
Characteristics and indicators
25 percent increase in bare ground over the Reference State.
annual grasses common
complete removal of bluebunch wheatgrass & rough fescue and replaced with sandberg bluegrass, western wheatgrass, and blue grama
sagebrush nearly gone and replaced with rabbitbrush and broom snakeweed
Resilience management
Prescribed grazing, Range seeding, Brush Management, Integrated Pest Management
Submodel
Description
The Invaded State is identified as being in the exponential growth phase of invader abundance where control is a priority. Dominance (or relative dominance) of noxious or invasive species reduces species diversity, forage production, wildlife habitat, and site protection. A level of 20 percent invasive species composition by dry weight indicates that a substantial energy input will be required to create a shift to the grassland state (herbicide, mechanical treatment), even with a return to proper grazing management or favorable growing conditions. Prescriptive grazing can be used to manage invasive species. In some instances, carefully targeted grazing (sometimes in combination with other treatments) can reduce or maintain the species composition of invasive species.
Characteristics and indicators
High amounts of invading species (both native and introduced).
Resilience management
Integrated Pest Management
Prescribed Grazing
Brush Management
Prescribed Fire
Range Seeding
Submodel
Description
Rocky Mountain juniper (Juniperus scopulorum), Douglas fir (Pseudotsuga menziesii), and ponderosa pine (Pinus ponderosa) encroachment is limited on this ecological site and is generally focused in areas where the mountains of MLRA 44B transition quickly to MLRA 43B. Under the Reference State, no conifers should exist on this site. Conifer Encroached State consists of up to 4 potential phases. The Early Phase, Mid Phase, Late Phase, and Closed Phase are defined by the amount of encroachment and age class of the stand. This state typically occurs in response to a combination of long-term fire suppression, grazing history, and increased atmospheric carbon dioxide. The trigger for transition is a coniferous expansion of more than 2 stems per acre.
Submodel
Mechanism
The Reference State (1) transitions to the Altered State (2) if bluebunch wheatgrass and rough fescue, by dry weight, decreases to below 30 percent or if bare ground cover is increases by 10 percent. The driver for this transition is loss of taller bunchgrasses, which creates open areas in the plant canopy with bare soil. Soil erosion results in decreased soil fertility, driving transitions to the Altered State. There are several other key factors signaling the approach of transition T1A: increases in soil physical crusting, decreases in cover of cryptogamic crusts, decreases in soil surface aggregate stability and/or evidence of erosion including water flow patterns, development of plant pedestals, and litter movement. The trigger for this transition is improper grazing management and/or long-term drought leading to a decrease in bluebunch wheatgrass and rough fescue composition to less than 30 percent and reduction in total plant canopy cover.
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Prescribed Grazing |
Mechanism
The Reference State (1) transitions to the Degraded State (3) when bluebunch wheatgrass and rough fescue are removed from the plant community and Needle-and-thread is subdominant to short statured bunchgrasses such as Sandberg bluegrass. The trigger for this transition is loss of taller bunchgrasses, which creates open spaces with bare soil. Soil erosion results in decreased soil fertility, driving transitions to the Degraded State. There are several other key factors signaling the approach of transition T1C: increases in soil physical crusting, decreases in cover of cryptogamic crusts, decreases in soil surface aggregate stability and/or evidence of erosion including water flow patterns, development of plant pedestals, and litter movement. The driver for this transition is improper grazing management, intense or repeated fires, and/or heavy human disturbance. Rapid transition is generally realized where livestock are confined to small pastures for long periods of time.
Mechanism
Healthy plant communities are most resistant to invasion however, regardless of grazing management, without some form of active weed management (chemical, mechanical, or biological control) and without prevention the Reference State (1) can transition to the Invaded State (4) in the presence of aggressive invasive species such as spotted knapweed, leafy spurge, and cheatgrass. The Central Rocky Mountain Valleys tend to resists invasion of cheatgrass however repeated heavy grazing or intense human activities can open the interspaces of the bunchgrass community and allow for encroachment. Long-term stress conditions for native species (e.g., overgrazing, drought, and fire) accelerate this transition. If populations of invasive species reach critical levels, the site transitions to the Invaded State. The trigger for this transition is the presence of aggressive invasive species. Species composition by dry weight of invasive species approaches 10 percent.
Mechanism
Canopy cover of conifer tree/shrub cover exceeds 1 stem per acre. The trigger is the presence of seeds and/or other viable material of invasive species.
Mechanism
The Altered State (2) has lost soil or vegetation attributes to the point that recovery to the Reference State (1) will require reclamation efforts such as soil rebuilding, intensive mechanical and cultural treatments, and/or revegetation. Examples of mechanical treatment may be brush control while cultural treatments may include prescribed grazing, targeted brush browsing, or prescribed burning. Low intensity prescribed fires to reduce competitive increaser plants such as needle-and-thread and Sandberg bluegrass. A low intensity fire will also reduce Wyoming big sagebrush densities. In areas with potential of annual grass infestation, fire should be carefully planned or avoided. The drivers for this restoration pathway are reclamation efforts along with proper grazing management.
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Fence |
|
Livestock Pipeline |
|
Grazing Land Mechanical Treatment |
|
Range Planting |
|
Prescribed Grazing |
Mechanism
As improper grazing management continues vigor of bunch grasses will decrease, and the shorter grasses and shrubs will increase towards the Degraded State (3). Prolonged drought will provide a competitive advantage to shrubs allowing them to become co-dominant with grasses. Shrub canopy will increase. Key transition factors: increase of native shrub canopy cover; reduction in bunchgrass production; decrease in total plant canopy cover and production; increases in mean bare patch size; increases in soil crusting; decreases in cover of cryptobiotic crusts; decreases in soil aggregate stability; and/or evidence of erosion including water flow patterns and litter movement.
Mechanism
Invasive species can occupy the Altered State (2) and drive it to the Invaded State (4). The Altered State is at risk if invasive seeds and/or other viable material are present. The driver for this transition is more than 20 percent dry weight of invasive species. The trigger is the presence of seeds and/or other viable material of invasive species.
Mechanism
Canopy cover of conifer tree/shrub cover exceeds 1 stem per acre. The trigger is the presence of seeds and/or other viable material of invasive species.
Mechanism
The Degraded State (3) has lost soil or vegetation attributes to the point that recovery to the Reference State (1) will require reclamation efforts, such as soil rebuilding, intensive mechanical treatments, and/or revegetation. Studies suggest (Whitford et al 1989) a mulch with high carbon to nitrogen ratio such as wood chips or bark in low moisture scenarios can be beneficial for slow mobilization of plant available nitrogen. Biochar may also be added to the system to improve Soil Organic Carbon (SOC) which should improve Cation Exchange Capacity (CEC), microbial activity, and hydrologic conductivity (Stavi 2012). The drivers for the restoration pathway are removal of increaser species, restoration of native bunchgrass species, persistent management of invasives and shrubs, and proper grazing management. Without continued control, invasive and shrub species are likely to return (probably rapidly) due to presence of seeds and/or other viable material in the soil and management related increases soil disturbance.
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Fence |
|
Grazing Land Mechanical Treatment |
|
Range Planting |
|
Prescribed Grazing |
Mechanism
Since the bunchgrass plant community has been significantly reduced, restoration to the Altered State (2) is unlikely unless a seed source is available. If a sufficient amount of grass remains on the site, chemical application and/or biological control in conjunction with proper grazing management, can reduce the amount of shrubs and invasive species and restore the site to the Shortgrass Community (2.2). Low intensity fire can be utilized to reduce Wyoming big sagebrush competition and allow the reestablishment of grass species. Caution must be used when considering fire as a management tool on sites with fire tolerant shrubs such as rubber rabbitbrush, as these shrubs will re-sprout after a burn. Broom snakeweed and fringed sagewort may or may not re-sprout depending on conditions (USDA Forest Service 2011).
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Range Planting |
|
Integrated Pest Management (IPM) |
|
Prescribed Grazing |
Mechanism
Invasive species can occupy the Degraded State (3) and drive it to the Invaded State (4). The Degraded State is at risk of this transition occurring if invasive seeds or viable material are present. The driver for this transition is presence of critical population levels of invasive species. The trigger is the presence of seeds or viable material of invasive species. This state has sufficient bare ground that the transition could occur simply due to presence or introduction of invasive seeds or viable material. This is particularly true of aggressive invasive species such as spotted knapweed and cheatgrass. This transition could be assisted by overgrazing (failure to adjust stocking rate to declining forage production), long-term lack of fire, or extensive drought.
Mechanism
Canopy cover of conifer tree/shrub cover exceeds 1 stem per acre. The trigger is the presence of seeds and/or other viable material of invasive species.
Mechanism
Restoration of the Invaded State (4) to the Reference State (1) requires substantial energy input. The drivers for the restoration pathway are removal of invasive species, restoration of native bunchgrass species, persistent management of invasive species, and proper grazing management. Without continued control, invasive species are likely to return (probably rapidly) due to the presence of seeds and/or other viable material in the soil and management related practices that increase soil disturbance. If invaded by conifer encroachment, treatment depends on the condition of the rangeland. See Plant community 4.1 for alternative measures of restoration.
Sites that have transitioned from the Degraded State (3) to the Invaded State (4) may be severely lacking soil and vegetative properties that will allow for restoration to the Reference State. Hydrologic function damage may be irreversible especially with accelerated gully erosion.
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Range Planting |
|
Integrated Pest Management (IPM) |
|
Rangeland Fertilization |
|
Prescribed Grazing |
Mechanism
If invasive species are removed before remnant populations of bunchgrasses have been drastically reduced the Invaded State (4) can return to the Altered State. The driver for the reclamation pathway is weed management without reseeding. Continued Integrated Pest Management (IPM) will be required as many of the invasive species that can occupy the Invaded State have extended dormant seed life. The trigger is invasive species control.
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Prescribed Grazing |
Mechanism
If invasive species are removed the site could return to the Degraded State (3). Without sufficient remnant populations of preferred plants the Invaded State (4) is not likely to return to any of the other states. The driver for the reclamation pathway is weed management without reseeding. The trigger is invasive species control. The invading species cause a significant increased soil loss due to lack of ground cover (Lacey et al. 1989).
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Integrated Pest Management (IPM) |
|
Prescribed Grazing |
Mechanism
Canopy cover of conifer tree/shrub cover exceeds 1 stem per acre. The trigger is the presence of seeds and/or other viable material of invasive species.
Mechanism
Depending on the level of conifer canopy cover and its impact on rangeland health, restoration efforts may be simply focus on removal of coniferous trees and shrubs to restore the Conifer Encroached State (5) to the Reference State (1).
If utilizing the phases established by Miller et al management and restoration methods will vary. An large majority of the conifer encroachment in MLRA 44B will fall into the early two phases of Miller's Phases.
Phase I may exhibit None-Slight to Moderate departures from rangeland health where removal of the conifers via Brush Management and/or Prescribed fire combined. If mechanical removal of conifers is utilized, no grazing management is needed assuming relatively conservative management had been used prior to treatment. If prescribed fire is utilized, short term grazing deferment and/or rest is suggested. Given a short time removal of a Phase I encroachment will recover to Reference. Proactive pest management is encouraged.
Phase II Encroachment may require a more intense mechanical removal of trees/shrubs with Prescribed Fire not being a feasible method of control as this community may be at risk of catastrophic fire due to canopy density. Phase II displays a Moderate departure from Reference suggesting an overall instability of the site such as reduced herbaceous production, reduced functional/structural groups (e.g. reduced mid-statured bunchgrasses), increase rill frequency and length, and possibly increased bare ground. Increased post treatment grazing management may be necessary. Grazing management may be as simple as short term growing season deferment however long term rest may be necessary in the latter stages of Phase II encroachment. Latter stages of Phase II encroachment will likely require some short term erosion mitigation such as straw waddles as well as range planting and/or critical area planting to re-establish any loss of native herbaceous plants particularly mid-statured cool season bunchgrasses.
Phase III Encroachment canopy cover resembles forested sites with larger trees and shrubs. Forest management style tree removal (woody debris and logs removed from the site) will be necessary prior to any prescribed burning as to prevent the fire from burning too hot. The result of a prescribed fire on this site are typically unknown as seed sources of native herbaceous plants are usually limited to small patches. Since herbaceous plants will likely have been depleted under a Phase III encroachment, there is an opportunity for large areas of bare ground, increase rill and in some cases gully erosion. Post treatment will require range planting and/or critical area seeding, erosion control, pest management, and possibly soil carbon amendments (biochar). Grazing management (primarily rest) will be necessary to ensure any new seedling establishment.
Mechanism
The Conifer Encroached State (5) Phases I and II will generally resemble the Altered State (2) on this site. If utilizing the phases established by Miller et al management and restoration methods will vary. An large majority of the conifer encroachment in MLRA 44B will fall into the early two phases of Miller's Phases.
Phase I may exhibit None-Slight to Moderate departures from rangeland health where removal of the conifers via Brush Management and/or Prescribed fire combined. If mechanical removal of conifers is utilized, no grazing management is needed assuming relatively conservative management had been used prior to treatment. If prescribed fire is utilized, short term grazing deferment and/or rest is suggested. Given a short time removal of a Phase I encroachment will recover to Reference. Proactive pest management is encouraged.
Phase II Encroachment may require a more intense mechanical removal of trees/shrubs with Prescribed Fire not being a feasible method of control as this community may be at risk of catastrophic fire due to canopy density. Phase II displays a Moderate departure from Reference suggesting an overall instability of the site such as reduced herbaceous production, reduced functional/structural groups (e.g. reduced mid-statured bunchgrasses), increase rill frequency and length, and possibly increased bare ground. Increased post treatment grazing management may be necessary. Grazing management may be as simple as short term growing season deferment however long term rest may be necessary in the latter stages of Phase II encroachment. Latter stages of Phase II encroachment will likely require some short term erosion mitigation such as straw waddles as well as range planting and/or critical area planting to re-establish any loss of native herbaceous plants particularly mid-statured cool season bunchgrasses.
Phase III Encroachment canopy cover resembles forested sites with larger trees and shrubs. Forest management style tree removal (woody debris and logs removed from the site) will be necessary prior to any prescribed burning as to prevent the fire from burning too hot. The result of a prescribed fire on this site are typically unknown as seed sources of native herbaceous plants are usually limited to small patches. Since herbaceous plants will likely have been depleted under a Phase III encroachment, there is an opportunity for large areas of bare ground, increase rill and in some cases gully erosion. Post treatment will require range planting and/or critical area seeding, erosion control, pest management, and possibly soil carbon amendments (biochar). Grazing management (primarily rest) will be necessary to ensure any new seedling establishment.
Mechanism
The Conifer Encroached State (5) Phases II and III will likely resemble the Degraded State (3) on this site due to reduced midstatured bunchgrasses. If utilizing the phases established by Miller et al management and restoration methods will vary. An large majority of the conifer encroachment in MLRA 44B will fall into the early two phases of Miller's Phases. This Restoration Pathway is exceedingly rare as it is typically not cost effect for land managers to manage for a degraded state.
Phase I may exhibit None-Slight to Moderate departures from rangeland health where removal of the conifers via Brush Management and/or Prescribed fire combined. If mechanical removal of conifers is utilized, no grazing management is needed assuming relatively conservative management had been used prior to treatment. If prescribed fire is utilized, short term grazing deferment and/or rest is suggested. Given a short time removal of a Phase I encroachment will recover to Reference. Proactive pest management is encouraged.
Phase II Encroachment may require a more intense mechanical removal of trees/shrubs with Prescribed Fire not being a feasible method of control as this community may be at risk of catastrophic fire due to canopy density. Phase II displays a Moderate departure from Reference suggesting an overall instability of the site such as reduced herbaceous production, reduced functional/structural groups (e.g. reduced mid-statured bunchgrasses), increase rill frequency and length, and possibly increased bare ground. Increased post treatment grazing management may be necessary. Grazing management may be as simple as short term growing season deferment however long term rest may be necessary in the latter stages of Phase II encroachment. Latter stages of Phase II encroachment will likely require some short term erosion mitigation such as straw waddles as well as range planting and/or critical area planting to re-establish any loss of native herbaceous plants particularly mid-statured cool season bunchgrasses.
Phase III Encroachment canopy cover resembles forested sites with larger trees and shrubs. Forest management style tree removal (woody debris and logs removed from the site) will be necessary prior to any prescribed burning as to prevent the fire from burning too hot. The result of a prescribed fire on this site are typically unknown as seed sources of native herbaceous plants are usually limited to small patches. Since herbaceous plants will likely have been depleted under a Phase III encroachment, there is an opportunity for large areas of bare ground, increase rill and in some cases gully erosion. Post treatment will require range planting and/or critical area seeding, erosion control, pest management, and possibly soil carbon amendments (biochar). Grazing management (primarily rest) will be necessary to ensure any new seedling establishment.
Mechanism
If utilizing the phases established by Miller et al management and restoration methods will vary. An large majority of the conifer encroachment in MLRA 44B will fall into the early two phases of Miller's Phases. This Restoration Pathway is exceedingly rare as it is typically not cost effect for land managers to manage for a degraded state.
Phase I may exhibit None-Slight to Moderate departures from rangeland health where removal of the conifers via Brush Management and/or Prescribed fire combined. If mechanical removal of conifers is utilized, no grazing management is needed assuming relatively conservative management had been used prior to treatment. If prescribed fire is utilized, short term grazing deferment and/or rest is suggested. Given a short time removal of a Phase I encroachment will recover to Reference. Proactive pest management is encouraged.
Phase II Encroachment may require a more intense mechanical removal of trees/shrubs with Prescribed Fire not being a feasible method of control as this community may be at risk of catastrophic fire due to canopy density. Phase II displays a Moderate departure from Reference suggesting an overall instability of the site such as reduced herbaceous production, reduced functional/structural groups (e.g. reduced mid-statured bunchgrasses), increase rill frequency and length, and possibly increased bare ground. Increased post treatment grazing management may be necessary. Grazing management may be as simple as short term growing season deferment however long term rest may be necessary in the latter stages of Phase II encroachment. Latter stages of Phase II encroachment will likely require some short term erosion mitigation such as straw waddles as well as range planting and/or critical area planting to re-establish any loss of native herbaceous plants particularly mid-statured cool season bunchgrasses.
Phase III Encroachment canopy cover resembles forested sites with larger trees and shrubs. Forest management style tree removal (woody debris and logs removed from the site) will be necessary prior to any prescribed burning as to prevent the fire from burning too hot. The result of a prescribed fire on this site are typically unknown as seed sources of native herbaceous plants are usually limited to small patches. Since herbaceous plants will likely have been depleted under a Phase III encroachment, there is an opportunity for large areas of bare ground, increase rill and in some cases gully erosion. Post treatment will require range planting and/or critical area seeding, erosion control, pest management, and possibly soil carbon amendments (biochar). Grazing management (primarily rest) will be necessary to ensure any new seedling establishment.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.