Sandy Claypan
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1a More details
- Transition T1b More details
- Transition T2a/T2B More details
- Transition T2c More details
- Restoration pathway R3a/R3b More details
- Transition T3a More details
- Restoration pathway T4a More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
This state represents the natural range of variability that dominated the dynamics of this ecological site. This state was co-dominated by cool-season and warm-season grasses. In pre-European times, the primary disturbance mechanisms for this site in the reference condition included periods of below and/or above average precipitation, periodic fire, and herbivory by insects and large ungulates. Timing of fires and herbivory coupled with weather events dictated the dynamics that occurred within the natural range of variability. Cool-season and taller warm-season grasses would have declined and a corresponding increase in short, warm-season grasses would have occurred. Today, a similar state (State 2) can be found on areas that are properly managed with grazing and/or prescribed burning, and sometimes on areas receiving occasional short periods of rest.
Submodel
Description
This state represents the more common range of variability that exists with higher levels of grazing management but in the absence of periodic fire due to fire suppression. This state is co-dominated by cool- and warm-season grasses. It can be found on areas that are properly managed with grazing and/or prescribed burning, and sometimes on areas receiving occasional short periods of rest. Taller cool- and warm-season species can decline and a corresponding increase in short statured grass will occur.
Submodel
Description
This state is the result of invasion and dominance of introduced species. This state is characterized by the dominance of Kentucky bluegrass and smooth bromegrass, and an increasing thatch layer that effectively blocks introduction of other plants into the system. Plant litter accumulation tends to favor the more shade tolerant introduced grass species. The nutrient cycle is also impaired, and the result is typically a higher level of nitrogen which also favors the introduced species. Increasing plant litter decreases the amount of sunlight reaching plant crowns thereby shifting competitive advantage to shade tolerant introduced grass species. Studies indicate that soil biological activity is altered, and this shift apparently exploits the soil microclimate and encourages growth of the introduced grass species. Once the threshold is crossed, a change in grazing management alone cannot cause a reduction in the invasive grass dominance. Once the state is well established, even drastic events such as high intensity fires driven by high fuel loads of litter and thatch will not result in more than a very short term reduction of Kentucky bluegrass. These events may reduce the dominance of Kentucky bluegrass, but due to the large amount of rhizomes in the soil there is no opportunity for the native species to establish and dominate before Kentucky bluegrass rebounds and again dominates the system.
Submodel
Mechanism
This is the transition from the native herbaceous dominated reference state to the herbaceous dominated native/invaded state. This transition occurs when propagules of non-native species such as Kentucky bluegrass and/or smooth bromegrass are present and become established on the site. This occurs as natural and/or management actions (altered grazing and/or fire regime) favor an increase in cool-season sodgrasses. Chronic season-long or heavy late season grazing facilitates this transition. Complete rest from grazing and no fire events can also lead to this transition. The threshold between states is crossed when the non-natives become established on the site.
Mechanism
Removal of vegetative cover and tilling for agricultural crop production.
Mechanism
Transition T2a from Native/Invaded State (State 2) to the Invaded State (State 3)
Complete rest from grazing and elimination of fire are the two major contributors to this transition. Preliminary studies would tend to indicate this threshold may exist when Kentucky bluegrass exceeds 30% of the plant community and native grasses represent less than 40% of the plant community composition. The opportunity for high intensity spring burns is severely reduced by early green-up and increased moisture and humidity at the soil surface and grazing pressure cannot cause a reduction in sodgrass dominance. Production is limited to the sod forming species. Infiltration continues to decrease and runoff increases; energy capture into the system is restricted to early season low producing species. Nutrient cycling is limited by root depth of the dominant species. This transition typically leads to the 3.1 Smooth Brome/Kentucky Bluegrass/Needlegrass Plant Community Phase.
Transition T2b from Native/Invaded State (State 2) to the Invaded State (State 3)
This represents the transition from the more native dominated Native/Invaded State to a plant community phase dominated by a dense Kentucky bluegrass sod and grazing tolerant forbs. Heavy, continuous season-long grazing is the major contributor to this transition. Preliminary studies would tend to indicate this threshold may exist when Kentucky bluegrass exceeds 30% of the plant community and native grasses represent less than 40% of the plant community composition. This transition typically leads to the 3.2 Kentucky Bluegrass/Blue Grama Plant Community Phase.
Mechanism
Removal of vegetative cover and tilling for agricultural crop production.
Mechanism
R3a - Restoration along this pathway may be possible with the combination of prescribed burning and long-term prescribed grazing if sufficient native species remnants are present on the site.
R3b - Restoration may also be possible using selected plant materials and agronomic practices to approach something very near the functioning of the Invaded State (State 2). Application of chemical herbicides and the use of mechanical seeding methods using adapted varieties of the dominant native grasses are possible and can be successful. After establishment of the native grasses, management objectives must include the maintenance of those species, the associated reference function and continued treatment of the introduced grasses.
Mechanism
Removal of vegetative cover and tilling for agricultural crop production.
Mechanism
This is the Transition from any plant community to State 3 Invaded State. It is most commonly associated with the cessation of cropping without the benefit of range planting, resulting in a “go-back” situation. Soil conditions can be quite variable on the site, in part due to variations in the management/cropping history (e.g. development of tillage induced compaction, erosion, fertility, herbicide/pesticide carryover). Thus, soil conditions should be assessed when considering restoration techniques.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.