Sandy Lowland
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition 1 to 2 More details
- Transition 1 to 3 More details
- Transition 2 to 1 More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The grassland state is supported by empirical data and is defined by three native plant communities that are a result of periodic fire, drought, and herbivore and ungulate grazers. These events are part of the natural disturbance regime and climatic process that contribute to the development of the site. The Reference Plant Community consists of tall and mid, warm and cool season grasses, forbs, and shrubs. Plant community 2 is dominated by sand dropseed and western wheatgrass and combined with a minor component of reference community plant species. The third plant community that makes up the grassland state is called an at-risk plant community. This plant community is most vulnerable to exceeding the resilience limits of the grassland state and transitioning to an alternative state. This plant community is dominated by sand sagebrush and blue grama.
Continuous use, an absent forage and animal balance, in combination with inadequate rest of the dominant Reference Plant Community species, will reduce the production of the bluestems allowing western wheatgrass and sand dropseed to increase. To a small extent, some buffalograss will also increase. After the vegetation is reduced to western wheatgrass and heavy continuous grazing of the dominant plant species continues, kochia, Russian thistle, and other undesirable annuals can invade the area.
Once most of the taller species are eliminated from the site through grazing pressure and/or dry weather, regaining the potential vegetation through management is extremely slow and may take several decades. Where remnants of the taller species remain, grazing management that includes a forage and animal balance and scheduled rest during the growing season can be effective in returning the site to near its potential.
Cottonwood trees and sandbar willow trees can persist on this site due to fire suppression. These trees establish well and are a minor component of the reference vegetation of this site.
The following paragraphs are narratives for each of the described plant communities. These plant communities may not represent every possibility, but they probably are the most prevalent and repeatable plant communities that exist on this ecological site. The plant composition table shown below has been developed from the best available knowledge at the time of this revision. As more data is collected, some of these plant communities may be adjusted or removed and new ones may be added. None of these plant communities should necessarily be thought of as “Desired Plant Communities". According to the USDA NRCS National Range and Pasture Handbook, Desired Plant Communities will be determined by the decision-makers and will meet minimum quality criteria established by NRCS. The main purpose for including any description of a plant community here is to capture the current knowledge and experience at the time of this revision.
Submodel
Description
The Woody State is supported by empirical data and is defined by one plant community phase.
The Grassland State ecosystem has been driven beyond the limits of ecological resilience, and has crossed a threshold into the Woody State. The designation of the Woody State denotes changes in plant species composition. This change in plant species affects the hydrology, erosion potential, forage production, and wildlife habitat of the site. Understory plants may be negatively affected by shrubs, reducing the availability of light, soil moisture, and soil nutrients. As the size and density of shrubs increase, the cover and productivity of understory plants decrease. Desirable forage grasses often are the most severely reduced (Eddleman, 1983). As the vegetative cover changes from grasses to shrubs, a greater proportion of precipitation leaves rangeland via evaporation; therefore, less precipitation is available for producing herbaceous forage or for deep drainage or runoff (Thurow and Hester, 1997).
As establishment of shrubs increases, fine-fuel loads decrease. When the shrubs increase to greater than 30 percent canopy, the processes and functions that allow this state to become resilient become active and dominate over a grassland state. Prescribed fire can become an ineffective tool to eradicate the shrubs due to the lack of fine-fuel loads.
This alternative state should be tested through long-term observation of ecosystem behavior and repeated application of conservation and restoration practices. This state should be re-evaluated and refined continually.
Submodel
Description
The reference grassland state ecosystem has been driven beyond the limits of ecological resilience and has crossed a threshold into the tillage state. The designation of the tillage state denotes changes in soil properties and plant communities. These changes affect the hydrologic function, biotic integrity, and soil and site stability of the ecological site.
This alternative state should be tested through long-term observation of ecosystem behavior and repeated application of conservation and restoration practices. This state should be re-evaluated and refined on a continual basis.
Submodel
Mechanism
Transition from a grassland state to a woody state is a result of a prescription fire frequency greater than 20 years and the absence of managing shrub species at canopy levels below 5-10 percent, coupled with inadequate rest and recovery of dominant key plant community species. Prescribed fire can become an ineffective tool to eradicate shrubs due to the lack of fine fuel loads. This transition is a result of management applied over a period of approximately 40 years. The canopy cover of sand sagebrush is greater than 30 percent, which is beyond what a prescription fire or routine brush management techniques are able to control.
Mechanism
Mechanical tillage is the event that contributes directly to the loss of state resilience, and is the result in a shift between the grassland state and the tillage state. Ecological structure and function has been compromised. Soil properties affected by tillage include plant cover, nutrient availability, structure and aggregate stability, hydrologic function, temperature, and bulk density.
Mechanism
Management actions required to recover the grassland state include the removal of sand sagebrush to levels of approximately 10 percent canopy cover. Prescription fire might not be an option due to the lack of a fine-fuel load. Chemical treatment of sand sagebrush is an option. Precaution and care should be taken when attempting this treatment method. The residual ecosystem properties, such as seed sources, species composition, nutrient content, and hydrologic properties, greatly influence the rate and probability of successful restoration and the management required for restoration pathways. Recommendations include a consultation and field evaluation prior to undertaking restoration activities. This restoration activity requires more field investigation and documentation.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.