Steep Stony Hills
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
-
Transition 1 to 2
Lack of fire and brush control
More details -
Transition 1 to 3
Introduction of non-native species
More details -
Restoration pathway 2 to 1
Prescribed grazing, brush management, and prescribed burning
More details -
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The Grassland State defines the ecological potential and natural range of variability resulting from the natural disturbance regime of the Limy Hills ecological site. This state is supported by empirical data, historical data, local expertise, and photographs. It is defined by a suite of native plant communities that are a result of periodic fire, drought, and grazing by bison. These events are part of the natural disturbance regime and climatic process. The soil dynamic properties that can influence community phase and state changes are organic matter content, biological activity, aggregate stability, infiltration, soil fertility, and soil reaction. Other grazing and feeding animals such as elk, pronghorns, deer, rabbits, insects, and numerous burrowing rodents had secondary influences on plant community development. Today, cattle are the primary grazers on this ecological site. Within the grassland state, the woody vegetation will generally be less than 15 percent canopy cover per acre. If introduced, invasive or noxious plants are present, they should not exceed 15 percent of the total pounds of vegetation produced per acre in order to avoid crossing a threshold.
Plant communities within this state function similarly in their capacity to limit soil loss, cycle water, and produce vegetative biomass. The plant community phases can vary through changes in grazing management or fluctuating climatic conditions. The variables that control the resilience of this grassland state are long-term grazing management and frequency of fire.
Characteristics and indicators
Tallgrasses and Migrasses are dominant in the Grassland State.
Resilience management
Management strategies that will sustain this state include monitoring key forage species and providing a forage and animal balance.
Submodel
Description
This state is dominated by a shrub and/or tree plant community. The increase and spread of shrubs and trees results from an absence of fire. Woody plants can increase up to 34% from a lack of fire according to a study from 1937 to 1969, in contrast to a 1% increase on burned areas (Bragg and Hulbert, 1976). Periodic burning will hinder the establishment of most woody species and favor forbs and grasses. However, it should be pointed out that not all unburned areas have a woody plant invasion.
Birds, small mammals, and livestock are instrumental in the distribution of seed and accelerating the spread of most trees and shrubs common to this site. The speed of encroachment varies considerably and can occur on both grazed and non-grazed pastures.
Many species of wildlife, especially bobwhite quail, turkey, and white-tailed deer benefit from the growth of trees and shrubs for both food and cover. When management for specific wildlife populations is desirable, these options should be considered in any brush management plan.
Characteristics and indicators
Hydrologic function is affected by the amount of vegetative cover. Canopy interception loss can vary from 25.4% to 36.7% (Thurow and Hester, 1997). A small rainfall event is usually retained in the foliage and does not reach the litter layer at the base of the tree. Only when canopy storage is reached and exceeded does precipitation fall to the soil surface. Interception losses associated with the accumulation of leaves, twigs, and branches at the bases of trees are considerably higher than losses associated with the canopy. The decomposed material retains approximately 40% of the water that is not retained in the canopy (Thurow and Hester, 1997). Soil properties affected include biological activity, infiltration rates, and soil fertility.
Resilience management
Special planning will be necessary to assure that sufficient amounts of fine fuel are available to carry fires with enough intensity to control woody species. In some locations the use of chemicals as a brush management tool may be desirable to initiate and accelerate this transition.
Submodel
Description
This state includes three community phases which are characterized by the composition of plant species and soil functions that govern the ecological processes. These three plant communities occur and function independent of one another. Species that define this state include sericea lespedeza, caucasian bluestem, tall fescue, smooth brome, and Kentucky bluegrass. These species can and will invade rangelands without proactive control measures. sericea lespedeza and caucasian bluestem community phases are partially defined by the total production exceeding 15% by weight on a per acre basis. Tall fescue, smooth brome, and Kentucky bluegrass are partially defined by the total production exceeding 40% by weight on a per acre basis.
Characteristics and indicators
Ecological processes within this state that are affected and differ from the grassland state are hydrologic cycle and nutrient cycle. Water content and infiltration rates are affected by the species.
Resilience management
The plant communities that make up this state are sustained by fertilizing species and managing as pastureland or by a lack of treatment measures for individual species control, maintenance, and/or eradication.
Submodel
Mechanism
Changes from a Grassland State to a Woody State lead to changes in hydrologic function, forage production, dominant functional and structural groups, and wildlife habitat. Understory plants may be negatively affected by trees and shrubs by reductions in light, soil moisture, and soil nutrients. Increases in tree and shrub density and size have the effects of reducing understory plant cover and productivity, and desirable forage grasses often are most severely reduced (Eddleman, 1983). As vegetation cover changes from grasses to trees, a greater proportion of precipitation is lost throughout interception and evaporation; therefore, less precipitation is available for producing herbaceous forage or for deep drainage or runoff (Thurow and Hester, 1997).
Constraints to recovery
Recovery is possible through management.
Mechanism
Changes from a Grassland State to an introduced, invasive and/or noxious state can lead to changes in hydrology/erosion, forage production, wildlife habitat, and soil dynamic properties. These changes will vary depending on dominance of species. This transition is usually triggered by an introduction of non-native species. The source from which the species originated from (i.e. adjacent crop field) can usually but not always be detected. A threshold is crossed once the species (sericea lespedeza and Caucasian bluestem) is established and increases to levels of greater than 15% total annual production per acre. For cool season grasses such as tall fescue and smooth brome that level is >40% total annual production per acre. Changes in species diversity reflect changes in soil biota activity. The introduced, invasive and noxious species are not selected and grazed and as a result become increasingly dominant. Hydrology changes begin to occur with the buildup of litter and interception rates increase as canopy increases.
Constraints to recovery
Need more documentation for recovery processes.
Mechanism
Restoration efforts will be costly, labor-intensive, and can take many years, if not decades, to return to a Grassland State. Once canopy levels reach greater than 20 percent, estimated cost to remove trees is very expensive and includes high energy inputs. The technologies needed in order to go from an invaded Woody State to a Grassland State include but are not limited to: prescribed burning— the use of fire as a tool to achieve a management objective on a predetermined area under conditions where the intensity and extent of the fire are controlled; brush management—manipulating woody plant cover to obtain desired quantities and types of woody cover and/or to reduce competition with herbaceous understory vegetation, in accordance with overall resource management objectives; and prescribed grazing—the controlled harvest of vegetation with grazing or browsing animals managed with the intent to achieve a specified objective. In addition, to grazing at an intensity that will maintain enough cover to protect the soil and maintain or improve the quantity and quality of desirable vegetation. When a juniper tree is cut and removed, the soil structure and the associated high infiltration rate may be maintained for over a decade (Hester, 1996). This explains why the area near the dripline usually has substantially greater forage production for many years after the tree has been cut. It also explains why runoff will not necessarily dramatically increase once juniper is removed. Rather, the water continues to infiltrate at high rates into soils previously ameliorated by junipers, thereby increasing deep drainage potential. In rangeland, deep drainage amounts can be 16 percent of the total rainfall amount per year (Thurow and Hester, 1997).
Relevant conservation practices
Practice | External resources |
---|---|
Brush Management |
|
Prescribed Burning |
|
Prescribed Grazing |
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.