Footslope Prairie
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T1B More details
- Transition T1C More details
- Restoration pathway R2A More details
- Transition T2A More details
- Transition T2B More details
- Transition R2B More details
- Restoration pathway T3A More details
- Transition T3B More details
- Transition R3A More details
- Restoration pathway T4A More details
- Restoration pathway T4B More details
- Transition R4A More details
- Restoration pathway T5A More details
- Restoration pathway T5B More details
- Restoration pathway T5C More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The reference plant community is categorized as a mesic tallgrass community, dominated by herbaceous vegetation. The two community phases within the reference state are dependent on fire. Regular fire intervals alter species composition, cover, and extent, as well as keep woody species from dominating. Drought and episodic grazing have more localized impacts in the reference phases, but do contribute to overall species composition, diversity, cover, and productivity.
Submodel
Description
Fire suppression can transition the reference plant community into a semi-natural woodland state dominated by eastern redcedar (Briggs et al. 2002; Anderson 2003). Eastern redcedar is a species native to the eastern half of North America with a range spanning from Ontario east to Nova Scotia, south across the Great Plains into eastern Texas, and east to the Atlantic coast (Lawson 1990; Lee 1996). It is a long-lived (450+ years), slow-growing, fire-intolerant dioecious conifer historically found in areas that were protected from fire (e.g., bluffs, rocky hillsides, sandstone cliffs, granite outcrops, etc.) (Ferguson et al. 1968; Anderson 2003). Today, however, decades of fire suppression have allowed this species to spread, and it can now be found occupying sites with highly variable aspects, topography, soils, and formerly stable plant communities (Anderson 2003).
Submodel
Description
The forage state occurs when the site is converted to a farming system that emphasizes domestic livestock production, known as grassland agriculture. Fire suppression, periodic cultural treatments (e.g., clipping, drainage, soil amendment applications, planting new species and/or cultivars, mechanical harvesting) and grazing by domesticated livestock transition and maintain this state (USDA-NRCS 2003). Early settlers seeded non-native species, such as smooth brome and Kentucky bluegrass, to help extend the grazing season (Smith 1998). Over time, as lands were continuously harvested or grazed by herds of cattle, these species were able to spread and expand across the prairie ecosystem, reducing the native species diversity and ecological function.
Submodel
Description
The low topographic relief across the MLRA has resulted in nearly the entire area being converted to agriculture (Eilers and Roosa 1994). The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and oats (Avena L.) and alfalfa (Medicago sativa L.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.
Submodel
Description
Prairie reconstructions have become an important tool for repairing natural ecological functions and providing habitat protection for numerous grassland dependent species. Because the historic plant and soil biota communities of the tallgrass prairie were highly diverse with complex interrelationships, historic prairie replication cannot be guaranteed on landscapes that have been so extensively manipulated for extended timeframes (Kardol and Wardle 2010; Fierer et al. 2013). Therefore, ecological restoration should aim to aid the recovery of degraded, damaged, or destroyed ecosystems. A successful restoration will have the ability to structurally and functionally sustain itself, demonstrate resilience to the natural ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002). The reconstructed hill prairie state is the result of a long-term commitment involving a multi-step, adaptive management process. Diverse, species-rich seed mixes are important to utilize as they allow the site to undergo successional stages that exhibit changing composition and dominance over time (Smith et al. 2010). On-going management via prescribed fire and/or light grazing can help the site progress from an early successional community dominated by annuals and some weeds to a later seral stage composed of native, perennial grasses, forbs, and a few shrubs. Establishing a prescribed fire regimen that mimics natural disturbance patterns can increase native species cover and diversity while reducing cover of non-native forbs and grasses. Light grazing alone can help promote species richness, while grazing accompanied with fire can control the encroachment of woody vegetation (Brudvig et al. 2007).
Submodel
Mechanism
Long term fire suppression, land abandonment and/or overgrazing
Mechanism
Cultural treatments are implemented to increase forage quality and yield
Mechanism
Cultural treatments are implemented to increase forage quality and yield
Mechanism
Cultural treatments are implemented to increase forage quality and yield
Mechanism
Site preparation, invasive species control and native seeding
Mechanism
Long-term fire suppression, land abandonment and/or overgrazing
Mechanism
Site preparation, invasive species control and native seeding
Mechanism
Long-term fire suppression, land abandonment, and/or overgrazing
Mechanism
Cultural treatments are implemented to increase forage quality and yield
Mechanism
Site preparation, invasive species control and native seeding
Mechanism
Long-term fire suppression, land abandonment and/or grazing
Mechanism
Cultural treatments are implemented to increase forage quality and yield
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.