Moist Glacial Drift Upland Forest
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T1B More details
- Transition T1C More details
- Transition T2A More details
- Transition T2B More details
- Restoration pathway R2A More details
- Transition T4A More details
- Transition T4B More details
- Restoration pathway R4A More details
- Transition T5A More details
- Transition T5B More details
- Transition T5C More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The reference plant community is categorized as a maple-basswood forest community, dominated by mesic deciduous trees and shade-tolerant herbaceous vegetation. The two community phases within the reference state are dependent on storm damage and periodic pest outbreaks. The size and duration of disturbances alters species composition, cover, and extent.
Submodel
Description
Severe fragmentation from human activities and invasion of non-native invasive plants, pests, and diseases have resulted in significant degradation to the reference community in many stands (WDNR 2015). Overbrowsing by an unnaturally abundant deer population can also lead to changes in the composition, diversity, and production of the forest. Continuous browsing has been reported to prevent the regeneration of the historic canopy, which is replaced by mid-level and invasive species (Gubanyi et al. 2008; VerCauteren and Hygnstrom 2011). Similarly, herbaceous diversity and composition is also affected by selective browsing pressure (Gubanyi et al. 2008).
Submodel
Description
The anthropogenic state occurs when the reference state is cleared and developed for human use and inhabitation, such as for commercial and housing developments, landfills, parks, golf courses, cemeteries, earthen spoils, etc. The native vegetation has been removed and soils have either been altered in place (e.g. cemeteries) or transported from one location to another (e.g. housing developments). Most of the soils in this state have 50 to 100 cm of overburden on top of the natural soil. This natural material can be determined by observing a buried surface horizon or the unaltered subsoil, till, or lacustrine parent materials. This state is generally considered permanent.
Submodel
Description
The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and common wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.
Submodel
Description
The combination of natural and anthropogenic disturbances occurring today has resulted in numerous forest health issues, and restoration back to the historic reference condition may not be possible. Forests are being stressed by non-native diseases and pests, habitat fragmentation, changes in soil conditions, and overabundant deer populations on top of naturally occurring disturbances (severe weather and native pests) (IFDC 2018). However, these habitats provide multiple ecosystem services including carbon sequestration; clean air and water; soil conservation; biodiversity support; wildlife habitat; timber, fiber, and fuel products; as well as a variety of cultural activities (e.g., hiking, camping, hunting) (Millennium Ecosystem Assessment 2005; IFDC 2018). Therefore, conservation of forests and woodlands should still be pursued. Forest reconstructions are an important tool for repairing natural ecological functioning and providing habitat protection for numerous species associated with Moist Glacial Drift Upland Forests. Therefore, ecological restoration should aim to aid the recovery of degraded, damaged, or destroyed ecosystems. A successful restoration will have the ability to structurally and functionally sustain itself, demonstrate resilience to the ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002). The reconstructed maple-basswood forest state is the result of a long-term commitment involving a multi-step, adaptive management process.
Submodel
Mechanism
Degradation due to fragmentation and invasion by non-native pests transition the site to the degraded forest state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (4).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (4).
Mechanism
Site preparation, tree planting, invasive species control, seeding native species, and deer management transition this site to the reconstructed maple-basswood forest state (5).
Mechanism
Land abandonment transitions the site to the degraded forest state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Site preparation, tree planting, invasive species control, and seeding native species transition this site to the reconstructed maple-basswood forest state (5).
Mechanism
Removal of active management transitions this site to the degraded forest state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.