Silty-Loamy Floodplain Forest
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T1B More details
- Transition T1C More details
- Transition T2A More details
- Transition T2B More details
- Restoration pathway R2A More details
- Transition T4A More details
- Transition T4B More details
- Restoration pathway R4A More details
- Transition T5A More details
- Transition T5B More details
- Transition T5C More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The reference plant community is categorized as a floodplain forest community, dominated by woody and herbaceous vegetation tolerant of periodic flooding. The two community phases within the reference state are dependent on a regular flood regime. The amount and duration of flooding alters species composition, cover, and extent. Periodic pest outbreaks and windstorms have more localized impacts in the reference phases, but do contribute to overall species composition, diversity, cover, and productivity.
Submodel
Description
Agricultural tile drainage, stream channelization, and levee construction in hydrologically connected waters have drastically changed the natural hydrologic regime of Silty-Loamy Floodplain Forests. In addition, increased amounts of precipitation and intensity have amplified flooding events (Pryor et al. 2014). This has resulted in a type conversion from the species-rich forest to a ruderal floodplain forest state. In addition, exotic species have encroached and continuously spread, reducing native diversity and ecosystem stability.
Submodel
Description
The anthropogenic state occurs when the reference state is cleared and developed by human use and inhabitation, such as for commercial and housing developments, landfills, parks, golf courses, cemeteries, earthen spoils, etc. The native vegetation has been removed and soils have either been altered in place (e.g. cemeteries) or transported from one location to another (e.g. housing developments). Most of the soils in this state have 50 to 100 cm of overburden on top of the natural soil. This natural material can be determined by observing a buried surface horizon or the unaltered subsoil, till, or lacustrine parent materials. This state is generally considered permanent.
Submodel
Description
The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and common wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.
Submodel
Description
The combination of natural and anthropogenic disturbances occurring today has resulted in numerous ecosystem health issues, and restoration back to the historic reference state may not be possible. Many natural forest communities are being stressed by non-native diseases and pests, habitat fragmentation, permanent changes in hydrologic regimes, and overabundant deer populations on top of naturally occurring disturbances (severe weather and native pests) (IFDC 2018). However, these habitats provide multiple ecosystem services including carbon sequestration; clean air and water; soil conservation; biodiversity support; wildlife habitat; as well as a variety of cultural activities (e.g., hiking, hunting) (Millennium Ecosystem Assessment 2005; IFDC 2018). Therefore, conservation of floodplain forests should still be pursued. Habitat reconstructions are an important tool for repairing natural ecological functioning and providing habitat protection for numerous species of Silty-Loamy Floodplain Forests. Therefore, ecological restoration should aim to aid the recovery of degraded, damaged, or destroyed ecosystems. A successful restoration will have the ability to structurally and functionally sustain itself, demonstrate resilience to the ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002). The reconstructed floodplain forest state is the result of a long-term commitment involving a multi-step, adaptive management process.
Submodel
Mechanism
Altered hydrology throughout the watershed transitions the site to the hydrologically-altered state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Woody species removal, tillage, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (4).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Woody species removal, tillage, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (4).
Mechanism
Site preparation, tree planting, timber stand improvement, non-native species control, and water control structures installed to improve and regulate hydrology transition this site to the reconstructed floodplain forest state (5).
Mechanism
Land abandonment transitions the site to the hydrologically-altered state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Mechanism
Site preparation, tree planting, timber stand improvement, non-native species control, and water control structures installed to improve and regulate hydrology transition this site to the reconstructed floodplain forest state (5).
Mechanism
Removal of water control structures and unmanaged invasive species populations transition this site to the hydrologically-altered state (2).
Mechanism
Vegetation removal and human alterations/transportation of soils transitions the site to the anthropogenic state (3).
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.