Western Dry Loess Summit - PROVISIONAL
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1A More details
- Transition T1B More details
- Transition T1C More details
- Transition T1D More details
- Restoration pathway R2A More details
- Transition T2A More details
- Transition T2B More details
- Restoration pathway R3A More details
- Transition T3A More details
- Restoration pathway R4A More details
- Restoration pathway R4B More details
- Transition T4A More details
- Transition T4B More details
- Restoration pathway R5A More details
- Restoration pathway R5B More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The pre-settlement plant community of this ecological site was largely removed more than 150 years ago, and there are no extant examples of that community remaining. However, based on landscape position, soils, and existing community components, strong inferences over the structure and dynamics of that system are drawn.
Many species associated with this site respond well to fire, and the system, as a whole, is “fire-adapted” (NatureServe, 2011). Structurally, the community is characterized as woodland, and fire on a frequent return interval is projected to maintain a late development, open canopy woodland (based on LANDFIRE models; see LANDFIRE, 2008).
Two community phases are recognized for the reference state and they are distinguished from one another mainly by succession and disturbance type, size, and frequency.
Submodel
Description
This state is characterized by the regeneration or regrowth of a pre-existing forest stand following a major, stand-replacing disturbance. Scale of the disturbance is at the stand level and is greater than one acre in size (Johnson et al., 2009). Potential types of disturbances include catastrophic windstorms, wildfire, silvicultural clearcuts, and particularly destructive ice storms. The resulting, even-aged stand (or single-cohort) is set on a new course of development, which is highly dependent upon several critical factors including: the composition and structure of the stand prior to the disturbance; the degree or intensity of the disturbance; size and configuration of the disturbed area; and distance to seed sources.
Composition and condition of the stand prior to a major disturbance may dictate, in large part, future composition of the regenerating stand. Although colonization by new species is expected soon after the disturbance, many of the pre-existing overstory components are anticipated to occupy position in the new, developing stand – their presence arising mainly from stump or root sprouts, advance regeneration, and germination from the seed bank (Oliver and Larson, 1990).
If the intensity of the disturbance only removed the overstory and damage to the understory strata was light, then understory components of advance regeneration may proliferate in the new opening. This may be a desired condition if managing for an oak shelterwood harvest and subsequent oak recruitment. However, this scenario is particularly problematic in high-graded stands.
Submodel
Description
Forests in this state have undergone repeated select harvests over time. Actions leading to this condition consist of removing large, healthy trees of the most desirable species and leaving low-quality trees (damaged and deformed) and undesirable species. This action, conducted repeatedly, can cause tremendous shifts in species composition and can decrease the vigor and health of the residual stand. Without implementing carefully prescribed management actions, species composition of extreme high-graded stands may remain in a highly altered condition for many decades, even after large, stand-replacing disturbances resets “successional opportunity.”
Today, this vegetation state probably represents the conditions of many forest stands throughout the distribution of this site. Local stands in which desirable species such as oaks and shortleaf pine were repeatedly targeted often results in sites with proportionally more hickory.
Because “overgrazed woods” often consists of components very similar to high-graded stands, uncontrolled livestock access to forests is also included in this state. This approach does not take into account carefully prescribed and/or managed forms of forest grazing (e.g., agroforestry or silvopasture), which generally has a mutual goal of providing quality forage and productive forest management. The conditions considered and represented here are the extreme cases of long-term forest grazing. This form of uncontrolled access has been referred to as “turning livestock into the woods” (Brantly, 2014).
A single community phase is selected to represent the breadth of conditions that may be anticipated in stands having been high-graded and uncontrolled access by livestock.
Submodel
Description
This state represents a broad range of management objectives, options, and activities on this site. Various management or silvicultural methods can lead to very different structural and compositional results. The range of methods are diverse and include even-aged (e.g., clearcut and shelterwood) and uneven-aged (single tree, diameter-limit, basal area, group selection, etc.) approaches. Included within these methods is an option to use disturbance mechanisms (e.g., fire, TSI, etc.) to reduce competition and achieve maximum growth potential of the desired species. Inherently, these various approaches result in different community or “management phases” and possibly alternate states. The decision to represent these varying methods and management strategies into a single state and phase at this time hinges on the need for additional information in order to formulate definitive pathways, management actions, and community responses. Forthcoming inventories of this site will provide more detail on this state and associated management phases.
Submodel
Description
This state is representative of sites that have been converted to and maintained in pasture and forage cropland, typically a grass – legume mixture. For pastureland, planning or prescribing the intensity, frequency, timing, and duration of grazing can help maintain desirable forage mixtures at sufficient density and vigor (USDA-NRCS, 2010; Green et al., 2006). Overgrazed pastures can lead to soil compaction and numerous bare spots, which may then become focal points of accelerated erosion and colonization sites of undesirable plants or weeds.
Establishing an effective pasture management program can help minimize the rate of weed establishment and assist in maintaining vigorous growth of desired forage. An effective pasture management program includes: selecting well-adapted grass and/or legume species that will grow and establish rapidly; maintaining proper soil pH and fertility levels; using controlled grazing practices; mowing at proper timing and stage of maturity; allowing new seedings to become well established before use; and renovating pastures when needed (Rhodes et al., 2005; Green et al., 2006). It is strongly advised that consultation with State Grazing Land Specialists and District Conservationists at local NRCS Service Centers be sought when assistance is needed in developing management recommendations or prescribed grazing practices.
Submodel
Mechanism
This pathway represents a large-scale, stand replacing disturbance, which may be caused by a catastrophic windstorm (e.g., straight-line winds, tornado), ice storm, severe fire, or a silvicultural clearcut. For this stressor to occur, most or all of the overstory must be removed or destroyed. A few residual trees may persist, but overall, the disturbance must be intensive enough, at least one acre or larger (Johnson et al., 2009), that a new, even-aged stand is created.
Mechanism
Repeated selective harvesting or high-grading of stands over time can cause shifts in species composition, structure, and overall health of affected stands. High-grading occurs when the most desirable trees of select species are repeatedly removed leaving behind inferior, low quality stems and undesirable species. This transition also includes uncontrolled access by livestock and impacts from sustained, selective grazing and browsing.
Mechanism
This pathway consists of prescribed silvicultural activities specifically designed to meet stand compositional and production objectives.
Mechanism
Actions required to convert forests to pasture or forage production include forest clearing, stump removal, herbicide application, seedbed preparation, and the establishment of desired forage.
Mechanism
This pathway represents a return to reference conditions through natural succession, if the disturbance occurred within a reference community.
Mechanism
This pathway represents the development of an even-aged stand that is prescribed to meet compositional and production objectives.
Mechanism
Pathway represents a conversion of the emerging stand to pastureland or hayland. Actions required include forest clearing, stump removal, herbicide application, seedbed preparation, and the establishment of desired plants.
Mechanism
This pathway represents a large-scale, stand replacing disturbance, which may be caused by a catastrophic windstorm (e.g., straight-line winds, tornado), ice storm, severe fire, landslide, or a silvicultural clearcut.
Mechanism
Actions include forest clearing, stump removal, herbicide application, seedbed preparation, and the establishment of desired plants.
Mechanism
Natural succession over a period of time coupled with disturbance such as low intensity (and possibly mixed severity fire) may transition a former timber-managed stand to one supporting reference conditions. Some question remains whether a return to reference conditions will occur in every situation, especially since some components may have been selectively culled from the stand. Management activities to aide recovery may include exotic species control and silvicultural treatment.
Mechanism
This pathway represents a large-scale, stand-initiating disturbance, which effectively removes most or all of the pre-existing overstory. Disturbances may include a catastrophic windstorm, severe wildfire, and silvicultural management (even-aged).
Mechanism
Repeated selective harvesting or high-grading of stands over time can cause shifts in species composition, structure, and overall health of affected stands. This transition also includes uncontrolled access by livestock and impacts from sustained, selective grazing and browsing. Impacts from continual grazing and uncontrolled access can result in the removal of palatable understory components, alteration of species composition in current and future stands, suitable conditions for exotic plant invasions, and soil compaction and erosion.
Mechanism
Actions include forest clearing, stump removal, herbicide application, seedbed preparation, and the establishment of desired plants.
Mechanism
This pathway represents natural succession back to perceived reference conditions. The period required for this transition to take place likely varies by location and is dependent upon local site conditions. LANDFIRE models (2008) suggest that over 60 years is required for a return to a late development community and this pathway is highly dependent upon species present in the developing stand in addition to the appropriate level and type of disturbance (e.g., fire return interval). Significant efforts may be required before a return to reference conditions is achieved (e.g., exotic species control, appropriate intensity and return interval of fire, potential artificial regeneration of community components, etc.).
Mechanism
This pathway represents prescribed management strategies for transitioning abandoned pastureland to managed woodland. Activities may include artificial regeneration of desired species; exotic species control; appropriate intensity and return interval of fire.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.