Natural Resources
Conservation Service
Ecological site R028BY006NV
SHALLOW CALCAREOUS LOAM 10-12 P.Z.
Accessed: 12/22/2024
General information
Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.
Figure 1. Mapped extent
Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.
MLRA notes
Major Land Resource Area (MLRA): 028B–Central Nevada Basin and Range
MLRA 28B occurs entirely in Nevada and comprises about 23,555 square miles (61,035 square kilometers). More than nine-tenths of this MLRA is federally owned. This area is in the Great Basin Section of the Basin and Range Province of the Intermontane Plateaus. It is an area of nearly level, aggraded desert basins and valleys between a series of mountain ranges trending north to south. The basins are bordered by long, gently sloping to strongly sloping alluvial fans. The mountains are uplifted fault blocks with steep sideslopes. Many of the valleys are closed basins containing sinks or playas. Elevation ranges from 4,900 to 6,550 feet (1,495 to 1,995 meters) in the valleys and basins and from 6,550 to 11,900 feet (1,995 to 3,630 meters) in the mountains.
The mountains in the southern half are dominated by andesite and basalt rocks that were formed in the Miocene and Oligocene. Paleozoic and older carbonate rocks are prominent in the mountains to the north. Scattered outcrops of older Tertiary intrusives and very young tuffaceous sediments are throughout this area. The valleys consist mostly of alluvial fill, but lake deposits are at the lowest elevations in the closed basins. The alluvial valley fill consists of cobbles, gravel, and coarse sand near the mountains in the apex of the alluvial fans. Sands, silts, and clays are on the distal ends of the fans.
The average annual precipitation ranges from 4 to 12 inches (100 to 305 millimeters) in most areas on the valley floors. Average annual precipitation in the mountains ranges from 8 to 36 inches (205 to 915 millimeters) depending on elevation. The driest period is from midsummer to midautumn. The average annual temperature is 34 to 52 degrees F (1 to 11 degrees C). The freeze-free period averages 125 days and ranges from 80 to 170 days, decreasing in length with elevation.
The dominant soil orders in this MLRA are Aridisols, Entisols, and Mollisols. The soils in the area dominantly have a mesic soil temperature regime, an aridic or xeric soil moisture regime, and mixed or carbonatic mineralogy. They generally are well drained, loamy or loamyskeletal, and shallow to very deep.
Nevada’s climate is predominantly arid, with large daily ranges of temperature, infrequent severe storms and heavy snowfall in the higher mountains. Three basic geographical factors largely influence Nevada’s climate: continentality, latitude, and elevation. The strong continental effect is expressed in the form of both dryness and large temperature variations. Nevada lies on the eastern, lee side of the Sierra Nevada Range, a massive mountain barrier that markedly influences the climate of the State. The prevailing winds are from the west, and as the warm moist air from the Pacific Ocean ascend the western slopes of the Sierra Range, the air cools, condensation occurs and most of the moisture falls as precipitation. As the air descends the eastern slope, it is warmed by compression, and very little precipitation occurs. The effects of this mountain barrier are felt not only in the West but throughout the state, as a result the lowlands of Nevada are largely desert or steppes.
The temperature regime is also affected by the blocking of the inland-moving maritime air. Nevada sheltered from maritime winds, has a continental climate with well-developed seasons and the terrain responds quickly to changes in solar heating. Nevada lies within the midlatitude belt of prevailing westerly winds which occur most of the year. These winds bring frequent changes in weather during the late fall, winter and spring months, when most of the precipitation occurs.
To the south of the mid-latitude westerlies, lies a zone of high pressure in subtropical latitudes, with a center over the Pacific Ocean. In the summer, this high-pressure belt shifts northward over the latitudes of Nevada, blocking storms from the ocean. The resulting weather is mostly clear and dry during the summer and early fall, with occasional thundershowers. The eastern portion of the state receives noteworthy summer thunderstorms generated from monsoonal moisture pushed up from the Gulf of California, known as the North American monsoon. The monsoon system peaks in August and by October the monsoon high over the Western U.S. begins to weaken and the precipitation retreats southward towards the tropics (NOAA 2004).
Ecological site concept
This site occurs on fan remnants. Slopes gradients of 4 to 15 percent are most typical. Elevations are 6000 to 7500 feet.
The soils associated with this site are shallow to a duripan. They formed in alluvium derived from limestone parent material. Soils are characterized by a calcic horizon and a mollic epipedon. Soil moisture regime is aridic bordering on xeric and the soil temperature regime is mesic.
The reference state is characterized by an open stand of perennial bunchgrasses, forbs, shrubs, and a few scattered trees. The plant community is dominated by black sagebrush and bluebunch wheatgrass. Production ranges from 400 to 800 pounds per acre.
Associated sites
F028BY060NV |
PIMO-JUOS/ARNO4/PSSPS-ACHY |
---|---|
R028BY007NV |
LOAMY 10-12 P.Z. |
R028BY008NV |
SHALLOW CALCAREOUS SLOPE 10-12 P.Z. |
R028BY011NV |
SHALLOW CALCAREOUS LOAM 8-10 P.Z. |
R028BY013NV |
SILTY 8-10 P.Z. |
Similar sites
R028BY008NV |
SHALLOW CALCAREOUS SLOPE 10-12 P.Z. Soils are shallow; slopes are steeper; less productive site. |
---|---|
R028BY048NV |
CALCAREOUS MOUNTAIN RIDGE Less productive site. |
R028BY027NV |
SHALLOW CALCAREOUS SLOPE 14+ P.Z. PSSP dominant grass; ACHY minor composition; less productive site; steep slopes. |
R028BY011NV |
SHALLOW CALCAREOUS LOAM 8-10 P.Z. Less productive site; PSSP is minor component. |
R028BY016NV |
SHALLOW CALCAREOUS SLOPE 8-10 P.Z. Steep slopes; less productive; PSSP is minor component. |
R028BY090NV |
SHALLOW CALCAREOUS HILL 14+ P.Z. Soils very shallow; very low producing site; PIMO dominates the aspect. |
R028BY093NV |
SHALLOW CLAY LOAM 12-14 P.Z. PSSP-ACTH7 codominant grasses; soils derived from volcanic parent material. |
R028BY059NV |
SHALLOW CALCAREOUS HILL 8-12 P.Z. Soils very shallow; on hill and lower mountain sideslopes; very low producing site; JUOS dominates aspect. |
R028BY089NV |
SHALLOW CLAY LOAM 10-12 P.Z. ACHY-ACTH7 codominant grasses; soils derived from volcanic parent material. |
Table 1. Dominant plant species
Tree |
Not specified |
---|---|
Shrub |
(1) Artemisia nova |
Herbaceous |
(1) Pseudoroegneria spicata |
Physiographic features
This site occurs on fan remnants. Slopes range from 2 to 30 percent, but slope gradients of 4 to 15 percent are most typical. Elevations are 6000 to 7500 feet. At lower elevations (6000 to 6500 feet) this site is restricted to cooler, northerly aspects.
Table 2. Representative physiographic features
Landforms |
(1)
Fan remnant
|
---|---|
Flooding frequency | None |
Ponding frequency | None |
Elevation | 1,829 – 2,286 m |
Slope | 4 – 15% |
Ponding depth | 0 cm |
Water table depth | 0 cm |
Aspect | Aspect is not a significant factor |
Climatic features
The climate associated with this site is semiarid, characterized by cold, moist winters and warm, dry summers.
Mean annual precipitation for this site ranges from 10 to 12 inches. Mean annual air temperature is about 45 to 50 degrees F. The average growing season is 85 to 100 days.
Mean annual precipitation across the range in which this ES occurs is 11.9 inches: Jan. 0.99; Feb. 1.05; Mar. 1.15; Apr. 1.37; May 1.3; Jun. 0.95; Jul. 0.78; Aug. 0.86; Sept. 0.80; Oct. 0.96; Nov. 0.8; Dec. 0.92.
*The above data is averaged from the Ruth and Eureka WRCC climate stations.
Table 3. Representative climatic features
Frost-free period (average) | 90 days |
---|---|
Freeze-free period (average) | 120 days |
Precipitation total (average) | 305 mm |
Figure 2. Monthly precipitation range
Figure 3. Monthly average minimum and maximum temperature
Figure 4. Annual precipitation pattern
Figure 5. Annual average temperature pattern
Climate stations used
-
(1) EUREKA [USC00262708], Eureka, NV
-
(2) RUTH [USC00267175], Ely, NV
Influencing water features
Influencing water features are not associated with this site.
Soil features
The soils associated with this site are shallow to a duripan, well drained, and formed in alluvium derived from limestone parent material. They are effervescent throughout and characterized by a calcic horizon and mollic epipedon. Soil moisture regime is aridic bordering on xeric and the soil temperature regime is mesic.
Soils associated with this site typically have from 30 to over 50 percent gravel and cobbles by volume distributed throughout the profile and a high amount of gravels and cobbles on the surface which provide a stabilizing affect. Available water holding capacity is very low.
Soil series associated with this site are Holborn, Pharo, Tarnach, Tecomar, and Urmafot.
A representative soil series is Urmafot, a loamy, mixed, superactive, mesic shallow Haploduridic Durixerolls. Diagnostic horizons include a mollic epipedon from the soil surface to 20cm, a calcic horizon occurs from 20 to 36cm, and a duripan from 36 to 81 cm. Clay content in the particle control sections average 18 to 27 percent. Rock fragments range from 15 to 35 percent, mainly consist of gravel. Reaction is moderately alkaline. Soils are strongly to violently effervescent.
In the future all components of this ecological site correlated to Holborn and Tarnach or other soils derived from residuum will be considered for correlation to 028BY008NV.
Table 4. Representative soil features
Parent material |
(1)
Alluvium
–
limestone
|
---|---|
Surface texture |
(1) Gravelly loam |
Family particle size |
(1) Loamy |
Drainage class | Well drained |
Permeability class | Moderate |
Soil depth | 23 – 51 cm |
Surface fragment cover <=3" | 10 – 25% |
Surface fragment cover >3" | 0 – 15% |
Available water capacity (0-101.6cm) |
2.54 – 5.33 cm |
Calcium carbonate equivalent (0-101.6cm) |
20 – 60% |
Electrical conductivity (0-101.6cm) |
0 mmhos/cm |
Sodium adsorption ratio (0-101.6cm) |
0 |
Soil reaction (1:1 water) (0-101.6cm) |
8.2 – 9 |
Subsurface fragment volume <=3" (Depth not specified) |
15 – 80% |
Subsurface fragment volume >3" (Depth not specified) |
0 – 20% |
Ecological dynamics
An ecological site is the product of all the environmental factors responsible for its development and it has a set of key characteristics that influence a site’s resilience to disturbance and resistance to invasives. Key characteristics include 1) climate (precipitation, temperature), 2) topography (aspect, slope, elevation, and landform), 3) hydrology (infiltration, runoff), 4) soils (depth, texture, structure, organic matter), 5) plant communities (functional groups, productivity), and 6) natural disturbance regime (fire, herbivory, etc.) (Caudle 2013). Biotic factors that influence resilience include site productivity, species composition and structure, and population regulation and regeneration (Chambers et al. 2013).
This ecological site is dominated by deep-rooted cool season, perennial bunchgrasses and long-lived shrubs (50+ years) with high root to shoot ratios. The dominant shrubs usually root to the full depth of the winter-spring soil moisture recharge, which ranges from 1.0 to over 3.0 m. (Comstock and Ehleringer 1992). Root length of mature sagebrush plants was measured to a depth of 2 meters in alluvial soils in Utah (Richards and Caldwell 1987). These shrubs have a flexible generalized root system with development of both deep taproots and laterals near the surface (Comstock and Ehleringer 1992). In the Great Basin, the majority of annual precipitation is received during the winter and early spring. This continental semiarid climate regime favors growth and development of deep-rooted shrubs and herbaceous cool season plants using the C3 photosynthetic pathway (Comstock and Ehleringer 1992). Winter precipitation and slow melting of snow results in deeper percolation of moisture into the soil profile. Herbaceous plants, that are more shallow-rooted than shrubs, grow earlier in the growing season and thrive on spring rains, while the deeper rooted shrubs lag in phenological development because they draw from deeply infiltrating moisture from snowmelt the previous winter.
Periodic drought regularly influences sagebrush ecosystems and drought duration and severity has increased throughout the 20th century in much of the Intermountain West. Major shifts away from historical precipitation patterns have the greatest potential to alter ecosystem function and productivity. Species composition and productivity can be altered by the timing of precipitation and water availability within the soil profile (Bates et al. 2006).
Native insect outbreaks are also important drivers of ecosystem dynamics in sagebrush communities. Climate is generally believed to influence the timing of insect outbreaks especially a sagebrush defoliator, Aroga moth (Aroga websteri). Aroga moth infestations have occurred in the Great Basin in the 1960s, early 1970s, and is ongoing in Nevada since 2004 (Bentz et al. 2008). Thousands of acres of sagebrush have been impacted, with partial to complete die-off observed (Gates 1964, Hall 1965), but the research is inconclusive of the damage sustained by black sagebrush populations.
Black sagebrush is generally long-lived; therefore it is not necessary for new individuals to recruit every year for perpetuation of the stand. Infrequent large recruitment events and simultaneous low, continuous recruitment is the foundation of population maintenance (Noy-Meir 1973). Survival of the seedlings is dependent on adequate moisture conditions.
The perennial bunchgrasses that are co-dominant with the shrubs include bluebunch wheatgrass and Indian ricegrass. Muttongrass, needleandthread and Sandberg bluegrass are other important grass species. These species generally have somewhat shallower root systems than the shrubs, but root densities are often as high or higher than those of shrubs in the upper 0.5 m of the soil profile. General differences in root depth distributions between grasses and shrubs results in resource partitioning in these shrub/grass systems.
The Great Basin sagebrush communities have high spatial and temporal variability in precipitation both among years and within growing seasons. Nutrient availability is typically low but increases with elevation and closely follows moisture availability. The invasibility of plant communities is often linked to resource availability. Disturbance can decrease resource uptake due to damage or mortality of the native species and depressed competition or can increase resource pools by the decomposition of dead plant material following disturbance. The invasion of sagebrush communities by cheatgrass has been linked to disturbances (fire, abusive grazing) that have resulted in fluctuations in resources (Chambers et al. 2007).
The range and density of singleleaf pinyon and Utah juniper have increased since the middle of the nineteenth century (Tausch 1999, Miller and Tausch 2000). Causes for invasion of trees include wildfire suppression, historic livestock grazing, and climate change (Bunting 1994). Mean fire return intervals prior to European settlement in black sagebrush ecosystems are estimated to be 100 to 200 years, however frequent enough to inhibit the expansion of trees into these low productive sagebrush cover types (Kitchen and McArthur 2007). Thus, trees were isolated to fire-safe areas such as rocky outcroppings and areas with low-productivity. An increase in crown density causes a decrease in understory perennial vegetation and an increase in bare ground. This allows for the invasion of non-native annual species such as cheatgrass. With annual species in the understory wildfire can become more frequent and increase in intensity. With frequent wildfires these plant communities can convert to annual species with a sprouting shrub and juvenile tree overstory.
This ecological site has low to moderate resilience to disturbance and resistance to invasion. Increased resilience increases with elevation, aspect, increased precipitation and increased nutrient availability. Four possible alternative stable states have been identified for this site.
Fire Ecology:
Fire is not a major disturbance of these community types (Winward 2001), and would be infrequent. Historic fire return intervals have been estimated at 100 to 200 years (Kitchen and McArthur 2007); however, fires were probably patchy and very infrequent due to the low productivity of these sites. Black sagebrush plants have no morphological adaptations for surviving fire and must reestablish from seed following fire (Wright et al. 1979). The ability of black sagebrush to establish after fire is mostly dependent on the amount of seed deposited in the seed bank the year before the fire. Seeds typically do not persist in the soil for more than 1 growing season (Beetle 1960). A few seeds may remain viable in soil for 2 years (Meyer 2008); however, even in dry storage, black sagebrush seed viability has been found to drop rapidly over time, from 81% to 1% viability after 2 and 10 years of storage, respectively (Stevens et al. 1981). Thus, repeated frequent fires can eliminate black sagebrush from a site, however black sagebrush in zones receiving 12 to 16 inches of annual precipitation have been found to have greater fire survival (Boltz 1994). In lower precipitation zones rabbitbrush may become the dominant shrub species following fire, often with an understory of Sandberg bluegrass and/or cheatgrass and other weedy species.
Singleleaf pinyon and Utah juniper are usually killed by fire, and are most vulnerable to fire when they under four feet tall (Bradley et al. 1992). Larger trees, because they have foliage farther from the ground and thicker bark, can survive low severity fires but mortality does occur when 60% or more of the crown is scorched (Bradley et al. 1992). With the low production of the understory vegetation, high severity fires within this plant community were not likely and rarely became crown fires (Bradley et al. 1992, Miller and Tausch 2000). With an increase of cheatgrass in the understory, fire severity is likely to increase. Singleleaf pinyon and Utah juniper reestablish by seed from nearby seed source or surviving seeds. Utah juniper begins to produce seed at about 30 years old (Bradley et al. 1992). Seeds establish best through the use of a nurse plant such as sagebrush and rabbitbrush (Everett and Ward 1984, Tausch and West 1988, Bradley et al. 1992).
The effect of fire on bunchgrasses relates to culm density, culm-leaf morphology, and the size of the plant. The initial condition of bunchgrasses within the site along with seasonality and intensity of the fire all factor into the individual species response. For most forbs and grasses the growing points are located at or below the soil surface providing relative protection from disturbances which decrease above ground biomass, such as grazing or fire. Thus, fire mortality is more correlated to duration and intensity of heat which is related to culm density, culm-leaf morphology, size of plant and abundance of old growth (Wright 1971, Young 1983). Fire will remove aboveground biomass from bluebunch wheatgrass but plant mortality is generally low (Robberecht and Defossé 1995). However, season and severity of the fire will influence plant response. Plant response will vary depending on post-fire soil moisture availability.
Fire will remove aboveground biomass from bluebunch wheatgrass but plant mortality is generally low (Robberecht and Defossé 1995) because the buds are underground (Conrad and Poulton 1966) or protected by foliage. Uresk et al. (1976) reported burning increased vegetative and reproductive vigor of bluebunch wheatgrass. Thus, bluebunch wheatgrass is considered to experience slight damage to fire but is more susceptible in drought years (Young 1983). Plant response will vary depending on season, fire severity, fire intensity and post-fire soil moisture availability.
Fire can cause high mortality, in addition to reducing basal area and yield of Thurber’s needlegrass (Britton et al. 1990). The fine leaves and densely tufted growth form make this grass susceptible to subsurface charring of the crowns (Wright and Klemmedson 1965). Although timing of fire highly influenced the response and mortality of Thurber’s needlegrass, smaller bunch sizes were less likely to be damaged by fire (Wright and Klemmedson 1965). Thurber’s needlegrass often survives fire and will continue growth or regenerate from tillers when conditions are favorable (Koniak 1985, Britton et al. 1990). Reestablishment on burned sites has been found to be relatively slow due to low germination and competitive ability (Koniak 1985). Cheatgrass has been found to be a highly successful competitor with seedlings of this needlegrass and may preclude reestablishment (Evans and Young 1978).
Needleandthread is a fine leaf grass and is considered sensitive to fire (Akinsoji 1988, Bradley et al. 1992, Miller et al. 2013). In a study by Wright and Klemmedson (1965), season of burn rather than fire intensity seemed to be the crucial factor in mortality for needleandthread grass. Early spring season burning was seen to kill the plants while August burning had no effect. Thus, under wildfire scenarios needleandthread is often present in the post-burn community.
Muttongrass, a minor component on this site, is top killed by fire but will resprout after low to moderate severity fires. A study by Vose and White (1991) in an open sawtimber site, found minimal difference in overall effect of burning on muttongrass.
State and transition model
Figure 6. T. Stringham, 8/2016
Figure 7. Legend
More interactive model formats are also available.
View Interactive Models
More interactive model formats are also available.
View Interactive Models
Click on state and transition labels to scroll to the respective text
Ecosystem states
States 2 and 5 (additional transitions)
State 1 submodel, plant communities
State 2 submodel, plant communities
State 3 submodel, plant communities
State 4 submodel, plant communities
State 5 submodel, plant communities
State 1
Reference State
The Reference State 1.0 is a representative of the natural range of variability under pristine conditions. The Reference State has three general community phases; a shrub-grass dominant phase, a perennial grass dominant phase and a shrub dominant phase. State dynamics are maintained by interactions between climatic patterns and disturbance regimes. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Plant community phase changes are primarily driven by fire, periodic drought and/or insect or disease attack.
Community 1.1
Community Phase
This community is dominated by black sagebrush, bluebunch wheatgrass, needleandthread and Indian ricegrass. Forbs and other grasses make up smaller components. Utah juniper is described in the site concept and may or may not be present. Potential vegetation composition is approximately 60% grasses, 5% forbs and 35% shrubs and trees. Approximate ground cover (basal and canopy) is 15 to 25 percent.
Figure 9. Annual production by plant type (representative values) or group (midpoint values)
Table 5. Annual production by plant type
Plant type | Low (kg/hectare) |
Representative value (kg/hectare) |
High (kg/hectare) |
---|---|---|---|
Grass/Grasslike | 269 | 404 | 538 |
Shrub/Vine | 150 | 219 | 287 |
Forb | 22 | 34 | 45 |
Tree | 7 | 17 | 27 |
Total | 448 | 674 | 897 |
Community 1.2
Community Phase
This community phase is characteristic of a post-disturbance, early-seral community. Bluebunch wheatgrass, Indian ricegrass, muttongrass and other perennial bunchgrasses dominate. Sprouting shrubs such as Douglas rabbitbrush, green ephedra and shadscale may increase. Depending on fire severity, patches of intact sagebrush may remain.
Community 1.3
Community Phase
Sagebrush increases in the absence of disturbance. Decadent sagebrush dominates the overstory and the deep-rooted perennial bunchgrasses in the understory are reduced either from competition with shrubs and/or from herbivory. Sandberg bluegrass may increase in the understory and become the dominant grass on the site. Scattered Utah juniper or singleleaf pinyon may be present on the site.
Pathway a
Community 1.1 to 1.2
A low severity fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires will typically be low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring may be more severe and reduce sagebrush cover to trace amounts.
Pathway b
Community 1.1 to 1.3
Time and lack of disturbance such as fire allows for sagebrush to increase and become decadent. Chronic drought, herbivory, or combinations of these will cause a decline in perennial bunchgrasses and fine fuels leading to a reduced fire frequency and allowing black sagebrush to dominate the site.
Pathway a
Community 1.2 to 1.1
Time and lack of disturbance will allow sagebrush to increase.
Pathway a
Community 1.3 to 1.1
A low severity fire, herbivory or combinations will reduce the sagebrush overstory and create a sagebrush/grass mosaic.
Pathway b
Community 1.3 to 1.2
Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires will typically be high severity due to the dominance of sagebrush in this community phase, resulting in removal of the overstory shrub community.
State 2
Current Potential State
This state is similar to the Reference State 1.0 with three similar community phases. Ecological function has not changed, however the resiliency of the state has been reduced by the presence of invasive weeds. Non-natives may increase in abundance but will not become dominant within this State. These non-natives can be highly flammable and can promote fire where historically fire had been infrequent. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These feedbacks include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Positive feedbacks decrease ecosystem resilience and stability of the state. These include the non-natives’ high seed output, persistent seed bank, rapid growth rate, ability to cross pollinate, and adaptations for seed dispersal.
Community 2.1
Community Phase
This community phase is similar to the Reference State Community Phase 1.1, with the presence of non-native species in trace amounts. Black sagebrush, bluebunch wheatgrass, needle and thread and Indian ricegrass dominate the site. Forbs and other shrubs and grasses make up smaller components of this site.
Community 2.2
Community Phase
This community phase is characteristic of a post-disturbance, early seral community where annual non-native species are present. Sagebrush is present in trace amounts; perennial bunchgrasses dominate the site. Depending on fire severity or intensity of Aroga moth infestations, patches of intact sagebrush may remain. Rabbitbrush may be sprouting. Annual non-native species are stable or increasing within the community.
Community 2.3
Community Phase (At Risk)
Black sagebrush dominates the overstory and perennial bunchgrasses in the understory are reduced, either from competition with shrubs or from inappropriate grazing, or from both. Rabbitbrush may be a significant component. Sandberg bluegrass may increase and become co-dominant with deep rooted bunchgrasses. Utah juniper and/or singleleaf pinyon may be present and without management will likely increase. Annual non-natives species may be stable or increasing due to lack of competition with perennial bunchgrasses. This site is susceptible to further degradation from grazing, drought, and fire. This community is at risk of crossing a threshold to either State 3.0 (grazing or fire) or State 4.0 (fire).
Community 2.4
Community Phase (At Risk)
This community phase is characteristic of a post-disturbance, mid seral community where perennial bunchgrasses have had two plus years of recovery. Annual non-native grasses, primarily cheatgrass, are sub to co-dominate to perennial bunchgrasses. The production of annual grasses is a function of favorable climatic conditions – typically a wet spring. Sagebrush may be present in trace amounts. Rabbitbrush or other sprouting shrubs may be increasing. This community phase is at risk of transitioning to Annual State 5.0.
Pathway a
Community 2.1 to 2.2
Fire reduces the shrub overstory and allows for perennial bunchgrasses to dominate the site. Fires are typically low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring or a change in management favoring an increase in fine fuels may be more severe and reduce sagebrush cover to trace amounts. Annual non-native species are likely to increase after fire.
Pathway b
Community 2.1 to 2.3
Time and lack of disturbance allows for sagebrush to increase and become decadent. Chronic drought reduces fine fuels and leads to a reduced fire frequency, allowing black sagebrush to dominate the site. Inappropriate grazing management reduces the perennial bunchgrass understory; conversely Sandberg bluegrass may increase in the understory depending on grazing management.
Pathway a
Community 2.2 to 2.1
Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows the shrub component to recover. The establishment of black sagebrush can take many years.
Pathway b
Community 2.2 to 2.4
Late spring moisture that favors the germination and production of non-native, annual grasses. Pathway typically occurs 3 to 5 years post-fire and may create a transitory plant community phase.
Pathway a
Community 2.3 to 2.1
Grazing management that reduces shrubs will allow for the perennial bunchgrasses in the understory to increase. Heavy late-fall/winter grazing may cause mechanical damage to sagebrush thus promoting the perennial bunchgrass understory. Brush treatments with minimal soil disturbance will also decrease sagebrush and release the perennial understory. Annual non-native species are present and may increase in the community. A low severity fire would decrease the overstory of sagebrush and allow for the understory perennial grasses to increase. Due to low fuel loads in this State, fires will likely be small creating a mosaic pattern.
Pathway b
Community 2.3 to 2.2
Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires will typically be high intensity due to the dominance of sagebrush in this community phase resulting in removal of the overstory shrub community. Annual non-native species respond well to fire and may increase post-burn. Brush treatment would reduce black sagebrush overstory and allow for perennial bunchgrasses to increase.
State 3
Shrub State
This state has two community phases, one that is characterized by a decadent black sagebrush overstory and the other with a shadscale or rabbitbrush overstory with a Sandberg bluegrass understory. The site has crossed a biotic threshold and site processes are being controlled by shrubs. Bare ground has increased and pedestalling of grasses may be excessive.
Community 3.1
Community Phase
Decadent black sagebrush dominates the overstory. Rabbitbrush may be a significant component. Deep-rooted perennial bunchgrasses may be present in trace amounts or absent from the community. Sandberg bluegrass and annual non-native species increase. Bare ground is significant and soil redistribution may be occuring. If present on the site, Utah juniper and/or singleleaf pinyon is increasing. This community phase may be at risk of transitioning to either the Tree State or Annual State.
Community 3.2
Community Phase
Shadscale and/or rabbitbrush dominate the overstory. Broom snakeweed may be present to increasing. Annual non-native species may be increasing and bare ground is significant. This site is at risk for an increase in invasive annual weeds.
Pathway a
Community 3.1 to 3.2
Fire reduces black sagebrush to trace amounts and allows for sprouting shrubs such as rabbitbrush to dominate. Shadscale may also establish post-fire and become dominate. Inappropriate or excessive sheep grazing could also reduce cover of sagebrush and allow for shadscale or sprouting shrubs to dominate the community. Brush treatments with minimal soil disturbance would facilitate sprouting shrubs and Sandberg bluegrass.
Pathway a
Community 3.2 to 3.1
Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows for the shrub component to recover. The establishment of black sagebrush may take many years.
State 4
Tree State
This state has two community phases that are characterized by a dominance of Utah juniper and/or singleleaf pinyon in the overstory. Black sagebrush and perennial bunchgrasses may still be present, but they are no longer controlling site resources. Soil moisture, soil nutrients and soil organic matter distribution and cycling have been spatially and temporally altered.
Community 4.1
Community Phase
Utah juniper and/or singleleaf pinyon dominates the overstory and site resources. Trees are actively growing with noticeable leader growth. Trace amounts of bunchgrasses may be found under tree canopies with trace amounts of Sandberg bluegrass and forbs in the interspaces. Sagebrush is stressed and dying. Recruitment of sagebrush cohorts is minimal. Annual non-native species are present under tree canopies. Bare ground interspaces are large and connected.
Community 4.2
Community Phase (At Risk)
Utah juniper and/or singleleaf pinyon dominates the site and tree leader growth is minimal; annual non-native species may be the dominant understory species and will typically be found under the tree canopies. Trace amounts of sagebrush may be present however dead skeletons will be more numerous than living sagebrush. Bunchgrasses may or may not be present. Sandberg bluegrass or mat forming forbs may be present in trace amounts. Bare ground interspaces are large and connected. Soil redistribution is evident.
Pathway a
Community 4.1 to 4.2
Time and lack of disturbance or management action allows for tree cover and density to further increase and trees to out-compete the herbaceous understory species for sunlight and water.
Pathway a
Community 4.2 to 4.1
Tree thinning with minimal soil disturbance such as mastication to reduce tree cover and seeding of desired species.
State 5
Annual State
This state has one community phase dominated by an annual grass community. In this state, a biotic threshold has been crossed and state dynamics are driven by the dominance and persistence of the annual grass community which is perpetuated by a shortened fire return interval fire. The herbaceous understory is dominated by annual non-native species such as cheatgrass and mustards. Resiliency has declined and further degradation from fire facilitates a cheatgrass and sprouting shrub plant community. The fire return interval has shortened due to the dominance of cheatgrass in the understory and is a driver in site dynamics.
Community 5.1
Community Phase
Annual non-native plants such as tansy mustard and cheatgrass dominate this site.
Transition A
State 1 to 2
Trigger: This transition is caused by the introduction of non-native annual plants, such as cheatgrass and mustards. Slow variables: Over time the annual non-native species will increase within the community. Threshold: Any amount of introduced non-native species causes an immediate decrease in the resilience of the site. Annual non-native species cannot be easily removed from the system and have the potential to significantly alter disturbance regimes from their historic range of variation.
Transition A
State 2 to 3
Trigger: To Community Phase 3.1: Inappropriate cattle/horse grazing will decrease or eliminate deep rooted perennial bunchgrasses, increase Sandberg bluegrass and favor shrub growth and establishment. To Community Phase 3.2: Severe fire will remove sagebrush overstory, decrease perennial bunchgrasses and enhance Sandberg bluegrass. Soil disturbing brush treatments and/or inappropriate sheep grazing will reduce sagebrush and potentially increase sprouting shrubs and Sandberg bluegrass. Slow variables: Long term decrease in deep-rooted perennial grass density and/or black sagebrush. Threshold: Loss of deep-rooted perennial bunchgrasses changes nutrient cycling, nutrient redistribution, and reduces soil organic matter. Loss of long-lived, black sagebrush changes the temporal and depending on the replacement shrub, the spatial distribution of nutrient cycling.
Transition B
State 2 to 4
Trigger: Time and lack of disturbance or management action allows for Utah Juniper and/or singleleaf pinyon to dominate. This may be coupled with grazing management that favors tree establishment by reducing understory herbaceous competition for site resources Feedbacks and ecological processes: Trees increasingly dominate use of soil water resulting in decreasing herbaceous and shrub production and decreasing organic matter inputs, contributing to reductions in soil water availability to grasses and shrubs and increased soil erodibility. Slow variables: Over time the abundance and size of trees will increase. Threshold: Trees dominate ecological processes and number of shrub skeletons exceed number of live shrubs.
Transition C
State 2 to 5
Trigger: Catastrophic fire or soil surface disturbance. Slow variables: Increased production and cover of non-native annual species. Threshold: Loss of deep-rooted perennial bunchgrasses and shrubs changes energy and nutrient capture and cycling both spatially and temporally within the community. Increased, continuous fine fuels modify the fire regime by changing intensity, size and spatial variability of fires.
Transition A
State 3 to 4
Trigger: Absence of disturbance over time allows for Utah juniper or singleleaf pinyon dominance. This may be coupled with grazing management that favors tree establishment by reducing understory herbaceous competition for site resources. Slow variables: Long-term increase in juniper and/or singleleaf pinyon density and size. Threshold: Trees overtop black sagebrush and out-compete shrubs for water and sunlight. Shrub skeletons exceed live shrubs in number. There is minimal recruitment of new shrub cohorts. Litter builds up underneath trees while bare ground increases in interspaces; this changes nutrient cycling and levels of organic matter in the soil.
Transition B
State 3 to 5
Trigger: Severe fire. Slow variables: Increased production and cover of non-native annual species. Threshold: Increased, continuous fine fuels modify the fire regime by changing intensity, size and spatial variability of fires. Changes in plant community composition and spatial variability of vegetation due to the loss of perennial bunchgrasses and sagebrush truncate energy capture spatially and temporally thus impacting nutrient cycling and distribution.
Restoration pathway A
State 4 to 2
Tree removal with minimum soil disturbance such as hand felling or mastication within community phase 4.1. This is usually combined with seeding of desired species.
Conservation practices
Brush Management | |
---|---|
Range Planting |
Transition A
State 4 to 5
Trigger: Catastrophic fire causing a stand replacement event will transition Annual State 5.0. Inappropriate tree removal practices with soil disturbance will also cause a transition to Annual State 5. Slow variables: Increased production and cover of non-native annual species under tree canopies. Threshold: Closed tree canopy with non-native annual species dominant in the understory changes the intensity, size and spatial variability of fires. Changes in plant community composition and spatial variability of vegetation due to the loss of perennial bunchgrasses and sagebrush truncate energy capture and impact nutrient cycling and distribution.
Additional community tables
Table 6. Community 1.1 plant community composition
Group | Common name | Symbol | Scientific name | Annual production (kg/hectare) | Foliar cover (%) | |
---|---|---|---|---|---|---|
Grass/Grasslike
|
||||||
1 | Primary Perennial Grasses | 229–491 | ||||
bluebunch wheatgrass | PSSPS | Pseudoroegneria spicata ssp. spicata | 135–269 | – | ||
Indian ricegrass | ACHY | Achnatherum hymenoides | 67–135 | – | ||
muttongrass | POFE | Poa fendleriana | 13–54 | – | ||
needle and thread | HECO26 | Hesperostipa comata | 13–34 | – | ||
2 | Secondary Perennial Grasses | 34–67 | ||||
squirreltail | ELEL5 | Elymus elymoides | 3–20 | – | ||
thickspike wheatgrass | ELLAL | Elymus lanceolatus ssp. lanceolatus | 3–20 | – | ||
Sandberg bluegrass | POSE | Poa secunda | 3–20 | – | ||
Forb
|
||||||
3 | Perennial | 13–67 | ||||
tapertip hawksbeard | CRAC2 | Crepis acuminata | 3–13 | – | ||
buckwheat | ERIOG | Eriogonum | 3–13 | – | ||
lupine | LUPIN | Lupinus | 3–13 | – | ||
phlox | PHLOX | Phlox | 3–13 | – | ||
Shrub/Vine
|
||||||
4 | Primary Shrubs | 148–235 | ||||
black sagebrush | ARNO4 | Artemisia nova | 135–202 | – | ||
winterfat | KRLA2 | Krascheninnikovia lanata | 13–34 | – | ||
5 | Secondary Shrubs | 27–74 | ||||
shadscale saltbush | ATCO | Atriplex confertifolia | 3–20 | – | ||
yellow rabbitbrush | CHVI8 | Chrysothamnus viscidiflorus | 3–20 | – | ||
mormon tea | EPVI | Ephedra viridis | 3–20 | – | ||
Stansbury cliffrose | PUST | Purshia stansburiana | 3–20 | – | ||
antelope bitterbrush | PUTR2 | Purshia tridentata | 3–20 | – | ||
Tree
|
||||||
7 | Evergreen | 7–27 | ||||
Utah juniper | JUOS | Juniperus osteosperma | 3–13 | – | ||
singleleaf pinyon | PIMO | Pinus monophylla | 3–13 | – |
Interpretations
Animal community
Livestock Interpretations:
This site is suitable for livestock grazing. Considerations for grazing management including timing, intensity and duration of grazing. Targeted grazing could be used to decrease the density of non-natives.
Black sagebrush is a significant browse species within the Intermountain region. It is especially important on low elevation winter ranges in the southern Great Basin, where extended snow free periods allow animal’s access to plants throughout most of the winter. In these areas it is heavily utilized by pronghorn and mule deer. Black sagebrush palatability has been rated as moderate to high depending on the ungulate and the season of use(Horton 1989, Wambolt 1996). The palatability of black sagebrush increase the potential negative impacts on remaining black sagebrush plants from grazing or browsing pressure following fire (Wambolt 1996). Pronghorn utilize black sagebrush heavily (Beale and Smith 1970). On the Desert Experiment Range, black sagebrush was found to comprise 68% of pronghorn diet even though it was only the third most common plant. Fawns were found to prefer black sagebrush utilizing it more than all other forage species combined (Beale and Smith 1970). Domestic livestock will also utilize black sagebrush. The domestic sheep industry that emerged in the Great Basin in the early 1900s was largely based on wintering domestic sheep in black sagebrush communities (Mozingo 1987). Domestic sheep will browse black sagebrush during all seasons of the year depending on the availability of other forage species with greater amounts being consumed in fall and winter. Black sagebrush is generally less palatable to cattle than to domestic sheep and wild ungulates (McArthur et al. 1982); however, cattle use of black sagebrush has also been shown to be greatest in fall and winter (Schultz and McAdoo 2002), with only trace amounts being consumed in summer (Van Vuren 1984).
Bluebunch wheatgrass is considered one of the most important forage grass species on western rangelands for livestock. Although bluebunch wheatgrass can be a crucial source of forage, it is not necessarily the most highly preferred species. Bluebunch wheatgrass is moderately grazing tolerant and is very sensitive to defoliation during the active growth period (Blaisdell and Pechanec 1949, Laycock 1967, Anderson and Scherzinger 1975, Britton et al. 1990). Herbage and flower stalk production was reduced with clipping at all times during the growing season; however, clipping was most harmful during the boot stage (Blaisdell and Pechanec 1949)). Tiller production and growth of bluebunch was greatly reduced when clipping was coupled with drought (Busso and Richards 1995). Mueggler (1975) estimated that low vigor bluebunch wheatgrass may need up to 8 years rest to recover. Although an important forage species, it is not always the preferred species by livestock and wildlife.Indian ricegrass is highly palatable to all classes of livestock in both green and cured condition. It supplies a source of green feed before most other native grasses have produced much new growth.
Muttongrass is excellent forage for domestic livestock especially in the early spring. Muttongrass begins growth in late winter and early spring, which makes it available before many other forage plants.
Muttongrass is a highly nutritious grass that is known for fattening sheep. Like Sandberg bluegrass, muttongrass greens up in early spring before many of the other perennial bunchgrasses, and is highly palatable to all classes of livestock as well as good forage to wildlife such as deer and elk (Dayton 1937). In a study by Currie et al. (1977) in a ponderosa pine forest, deer preferred muttongrass which comprised up to 18% of their diet.
Needleandthread provides highly palatable forage, especially in the spring before fruits have developed. Needlegrasses are grazed in the fall only if the fruits are softened by rain. In winter, at lower elevations, black sagebrush is heavily utilized by domestic sheep. Winterfat is an important forage plant for livestock, especially during winter when forage is scarce. Abusive grazing practices have reduced or eliminated winterfat on some areas even though it is fairly resistant to browsing. Effects depend on severity and season of grazing.
Stocking rates vary over time depending upon season of use, climate variations, site, and previous and current management goals. A safe starting stocking rate is an estimated stocking rate that is fine tuned by the client by adaptive management through the year and from year to year.
Wildlife Interpretations:
Black sagebrush are desirable forage plants and also act as good cover for wildlife (Blaisdell et al. 1982). Pronghorn do best where shrub cover is moderate to low, therefore, low sagebrush varieties may be preferred in some areas over big sagebrush varieties (Blaisdell et al. 1982). Furthermore, a review identified black sagebrush as the most important source of winter browse for pronghorn in Utah (Allen et al. 1984). In winter, it was reported by Clary and Beale (1983) that pronghorn preferred black sagebrush habitat.
In a study by Behan and Welch (1985) black sagebrush accessions were preferred over six other big sagebrush accessions for winter habitat by mule deer. Black sagebrush (and other sagebrush communities) are less attractive to elk and moose. In southwestern Wyoming comparing winter habitat use by wild ungulates, elk and moose used Wyoming big sagebrush and black sagebrush community less than expected, while mule deer used it almost exclusively (Oedekoven et al. 1987).
Bird species use black sagebrush habitat. Sage thrashers and most passerines prefer areas with black sagebrush and other dwarf shrubs over areas with taller shrubs (Medin et al. 2000). Gunnison sage-grouse, Columbian sharp-tailed grouse, Brewer's sparrow, sage sparrow, sage thrasher, also use black sagebrush communities for cover and feed (Paige and Ritter 1999). Greater Sage grouse are known obligates in black sagebrush and other sagebrush habitats and will use black sagebrush sites as winter grounds (Connelly et al. 2000). For example: sage-grouse on the Snake River Plains of Idaho use black sagebrush-big sagebrush communities as winter range, and in Nevada, sage-grouse select wind-swept ridges with short, scattered black sagebrush plants as winter feeding areas (Clements and Young 1997). In fact, throughout the west, greater sage grouse use mixed sagebrush habitats of big sagebrush and black sagebrush stands.
Black sagebrush, is often a component of low sagebrush communities and is an important shrub for pygmy rabbits and other sagebrush obligate species (Oregon Conservation Strategy, 2006).
Rodents also use black sagebrush habitats. A study in northeastern Nevada showed deer mice, Great Basin pocket mice, and Ord's kangaroo rats used gray low sagebrush-black sagebrush communities on dry ridge tops in late spring and summer (McAdoo et al. 2006). Rodents on cold-desert warm-desert ecotones within the Nevada Test Site preferred cold-desert communities over transition and warm-desert communities in which black sagebrush communities were more abundant (Hansen et al. 1999). Black sagebrush communities also support predators. According to study by MacLaren et al. (1988) greater sage-grouse are the primary avian prey of golden eagles in a mixed big sagebrush-black sagebrush shrubland in southeastern Wyoming.
Threats and Management
Changes in plant community composition caused by fire frequency, and other threats associated with this ecological site could affect the distribution and presence of wildlife species.
Hydrological functions
Runoff is medium to very high. Rills are none to rare. A few can be expected on steeper slopes in areas subjected to summer convection storms or rapid spring snowmelt. Water flow patterns are none to few and can be expected in areas subjected to summer convection storms or rapid snowmelt. Pedestals are none to rare. Occurrence is usually limited to areas of water flow patterns. Frost heaving of shallow rooted plants should not be considered a "normal" condition. Perennial herbaceous plants (especially deep-rooted bunchgrasses [i.e., bluebunch wheatgrass & Indian ricegrass] slow runoff and increase infiltration. Shrub canopy and associated litter break raindrop impact and provide snow capture on site.
Recreational uses
Aesthetic value is derived from the diverse floral and faunal composition and the colorful flowering of wild flowers and shrubs during the spring and early summer. This site offers rewarding opportunities to photographers and for nature study. This site is used for camping and hiking and has potential for upland and big game hunting.
Other products
Indian ricegrass was traditionally eaten by some Native Americans. The Paiutes used seed as a reserve food source.
Other information
Black sagebrush is an excellent species to establish on sites where management objectives include restoration or improvement of domestic sheep, pronghorn, or mule deer winter range.
Winterfat adapts well to most site conditions, and its extensive root system stabilizes soil. However, winterfat is intolerant of flooding, excess water, and acidic soils. Needleandthread grass is useful for stabilizing eroded or degraded sites.
Supporting information
Type locality
Location 1: Elko County, NV | |
---|---|
Township/Range/Section | T39 N R70 E S9 |
Latitude | 41° 16′ 51″ |
Longitude | 114° 3′ 3″ |
General legal description | Approximately 5 miles southeast of Dake Reservoir, on fans about 2 miles northwest of Bald Eagle Mountain, Elko County, Nevada. This site also occurs in Eureka, Lander and White Pine Counties, Nevada. |
Other references
Akinsoji, A. 1988. Postfire vegetation dynamics in a sagebrush steppe in southeastern Idaho, USA. Vegetatio 78:151-155.
Anderson, E. W. and R. J. Scherzinger. 1975. Improving quality of winter forage for elk by cattle grazing. Journal of Range Management:120-125.
Barney, M. A. and N. C. Frischknecht. 1974. Vegetation Changes following Fire in the Pinyon-Juniper Type of West-Central Utah. Journal of Range Management 27:91-96.
Bates, J. D., T. Svejcar, R. F. Miller, and R. A. Angell. 2006. The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments 64:670-697.
Beale, D. M. and A. D. Smith. 1970. Forage Use, Water Consumption, and Productivity of Pronghorn Antelope in Western Utah. The Journal of Wildlife Management 34:570-582.
Bentz, B., D. Alston, and T. Evans. 2008. Great Basin Insect Outbreaks. Pages 45-48 in Collaborative Management and Research in the Great Basin -- Examining the issues and developing a framework for action Gen. Tech. Rep. RMRS-GTR-204. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, CO.
Blaisdell, J. P. and J. F. Pechanec. 1949. Effects of Herbage Removal at Various Dates on Vigor of Bluebunch Wheatgrass and Arrowleaf Balsamroot. Ecology 30:298-305.
Bradley, A. F., N. V. Noste, and W. C. Fischer. 1992. Gen. Tech. Rep. INT-287: Fire ecology of forests and woodlands in Utah. . U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Ogden, UT.
Britton, C. M., G. R. McPherson, and F. A. Sneva. 1990. Effects of burning and clipping on five bunchgrasses in eastern Oregon. Great Basin Naturalist 50:115-120.
Bunting, S. 1994. Effects of Fire on Juniper woodland ecosystems in the great basin.in Proceedings--Ecology and Management of Annual Rangelands. USDA: FS Intermountain Research Station.
Busso, C. A. and J. H. Richards. 1995. Drought and clipping effects on tiller demography andgrowth of two tussock grasses in Utah. Journal of Arid Environments 29:239-251.
Caudle, D., J. Dibenedetto , M. Karl , H. Sanchez , and C. Talbot. 2013. Interagency ecological site handbook for rangelands.
Chambers, J., B. Bradley, C. Brown, C. D’Antonio, M. Germino, J. Grace, S. Hardegree, R. Miller, and D. Pyke. 2013. Resilience to Stress and Disturbance, and Resistance to Bromus tectorum L. Invasion in Cold Desert Shrublands of Western North America. Ecosystems:1-16.
Chambers, J. C., B. A. Roundy, R. R. Blank, S. E. Meyer, and A. Whittaker. 2007. What makes great basin sagebrush ecosystems invasible by Bromus tectorum? Ecological Monographs 77:117-145.
Comstock, J. P. and J. R. Ehleringer. 1992. Plant adaptation in the Great Basin and Colorado plateau. Western North American Naturalist 52:195-215.
Conrad, C. E. and C. E. Poulton. 1966. Effect of a wildfire on Idaho fescue and bluebunch wheatgrass. Journal of Range Management:138-141.
Currie, P. O., D. W. Reichert, J. C. Malechek, and O. C. Wallmo. 1977. Forage Selection Comparisons for Mule Deer and Cattle under Managed Ponderosa Pine. Journal of Range Management 30:352-356.
Dayton, W. 1937. Range plant handbook. USDA, Forest Service. Bull.
Eckert, R. E., Jr. and J. S. Spencer. 1987. Growth and reproduction of grasses heavily grazed under rest-rotation management. Journal of Range Management 40:156-159.
Evans, R. A. and J. A. Young. 1978. Effectiveness of Rehabilitation Practices following Wildfire in a Degraded Big Sagebrush-Downy Brome Community. Journal of Range Management 31:185-188.
Everett, R. L. and K. Ward. 1984. Early plant succession on pinyon-juniper controlled burns. Northwest Science 58:57-68.
Fire Effects Information System (Online; http://www.fs.fed.us/database/feis/plants/).
Ganskopp, D. 1988. Defoliation of Thurber Needlegrass: Herbage and Root Responses. Journal of Range Management 41:472-476.
Gates, D. H. 1964. Sagebrush infested by leaf defoliating moth. Journal of Range Management 17:209-210.
Hall, R. C. 1965. Sagebrush defoliator outbreak in Northern California. Res. Note PSW-RN-075., Berkeley, CA.
Horton, H. 1989. Interagency forage and conservation planting guide for Utah. Extension circular 433. Utah State University, Utah Cooperative Extension Service, Logan UT.
Houghton, J.G., C.M. Sakamoto, and R.O. Gifford. 1975. Nevada’s Weather and Climate, Special Publication 2. Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno, NV.
Kitchen, S. G. and E. D. McArthur. 2007. Big and black sagebrush landscapes. Fire Ecology and Management of the Major Ecosystems of Southern Utah. General Technical Report RMRS-GTR-202, Fort Collins, CO. US Department of Agriculture, Forest Service, Rocky Mountain Research Station. :73-94.
Koniak, S. 1985. Succession in pinyon-juniper woodlands following wildfire in the Great Basin. The Great Basin Naturalist 45:556-566.
Laycock, W. A. 1967. How heavy grazing and protection affect sagebrush-grass ranges. Journal of Range Management:206-213.
McArthur, E. D., A. Blaner, A. P. Plummer, and R. Stevens. 1982. Characteristics and hybridization of important Intermountain shrubs: 3. Sunflower family. En Ref. in Forest. Abstr 43:2176.
Miller, R. F., J. C. Chambers, D. A. Pyke, F. B. Pierson, and C. J. Williams. 2013. A review of fire effects on vegetation and soils in the Great Basin Region: response and ecological site characteristics.
Miller, R.F., R.J. Tausch, E.D. McArthur, D.D. Johnson, S.C. Sanderson 2008. Age structure and expansion of pinon-juniper woodlands: a regional perspective in the Intermountain West. Res.Pap.RMRS-RP-69. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 15 p.
Miller, R. F. and R. J. Tausch. 2000. The role of fire in pinyon and juniper woodlands: a descriptive analysis. Pages 15-30 in Proceedings of the invasive species workshop: the role of fire in the control and spread of invasive species. Fire conference.
Mozingo, H. N. 1987. Shrubs of the Great Basin: A natural history. Pages 67-72 in H. N. Mozingo, editor. Shrubs of the Great Basin. University of Nevada Press, Reno NV.
Mueggler, W. F. 1975. Rate and Pattern of Vigor Recovery in Idaho Fescue and Bluebunch Wheatgrass. Journal of Range Management 28:198-204.
National Oceanic and Atmospheric Administration. 2004. The North American Monsoon. Reports to the Nation. National Weather Service, Climate Prediction Center. Available online: http://www.weather.gov/
Norton, J.B., T.A. Monaco, J.M. Norton, D.A. Johnson, and T. A. Jones 2004. Soil morphology and organic matter dynamics under cheatgrass and sagebrush-steppe plant communities. Jo. of Arid Environments: 57, 445-466.
Noy-Meir, I. 1973. Desert Ecosystems: Environment and Producers. Annual Review of Ecology and Systematics 4:25-51.
Richards, J. H. and M. M. Caldwell. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486-489.
Robberecht, R. and G. Defossé. 1995. The relative sensitivity of two bunchgrass species to fire. International Journal of Wildland Fire 5:127-134.
Schultz, B. W. and J. K. McAdoo. 2002. Common Sagebrush in Nevada. Special Publication SP-02-02. University of Nevada, Cooperative Extension, Reno, NV.
Smoliak, S., J. F. Dormaar, and A. Johnston. 1972. Long-Term Grazing Effects on Stipa-Bouteloua Prairie Soils. Journal of Range Management 25:246-250.
Stringham, T.K., P. Novak-Echenique, P. Blackburn, C. Coombs, D. Snyder and A. Wartgow. 2015. Final Report for USDA Ecological Site Description State-and-Transition Models, Major Land Resource Area 28A and 28B Nevada. University of Nevada Reno, Nevada Agricultural Experiment Station Research Report 2015-01. p. 1524.
Tausch, R. J. 1999. Historic pinyon and juniper woodland development. Proceedings: ecology and management of pinyon–juniper communities within the Interior West. Ogden, UT, USA: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, RMRS-P-9:12-19.
Tausch, R. J. and N. E. West. 1988. Differential establishment of pinyon and juniper following fire. American Midland Naturalist:174-184.
Tueller, P. T. and W. H. Blackburn. 1974. Condition and Trend of the Big Sagebrush/Needleandthread Habitat Type in Nevada. Journal of Range Management 27:36-40.
Uresk, D. W., J. F. Cline, and W. H. Rickard. 1976. Impact of wildfire on three perennial grasses in south-central Washington. Journal of Range Management 29:309-310.
USDA-NRCS Plants Database (Online; http://www.plants.usda.gov).
Van Vuren, D. 1984. Summer Diets of Bison and Cattle in Southern Utah. Journal of Range Management 37:260-261.
Vose, J. M. and A. S. White. 1991. Biomass response mechanisms of understory species the first year after prescribed burning in an Arizona ponderosa-pine community. Forest Ecology and Management 40:175-187.
Wambolt, C. L. 1996. Mule Deer and Elk Foraging Preference for 4 Sagebrush Taxa. Journal of Range Management 49:499-503.
Wright, H. A. 1971. Why Squirreltail Is More Tolerant to Burning than Needle-and-Thread. Journal of Range Management 24:277-284.
Wright, H. A. and J. O. Klemmedson. 1965. Effect of Fire on Bunchgrasses of the Sagebrush-Grass Region in Southern Idaho. Ecology 46:680-688.
Young, R. P. 1983. Fire as a vegetation management tool in rangelands of the intermountain region. Pages 18-31 in Managing intermountain rangelands - improvement of range and wildlife habitats. USDA, Forest Service.
Contributors
HA/MD/RK
T.Stringham
E. Hourihan
P NovakEchenique
Rangeland health reference sheet
Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.
Author(s)/participant(s) | GK Brackley/P Novak-Echenique |
---|---|
Contact for lead author | State Rangeland Management Specialist |
Date | 06/01/2006 |
Approved by | P. Novak-Echenique |
Approval date | |
Composition (Indicators 10 and 12) based on | Annual Production |
Indicators
-
Number and extent of rills:
Rills are none to rare. A few can be expected on steeper slopes in areas subjected to summer convection storms or rapid spring snowmelt. -
Presence of water flow patterns:
Water flow patterns are none to few (short <1 m and disconnected) and can be expected in areas subjected to summer convection storms or rapid snowmelt. Flow patterns are meandering and are interrupted by plants and exposed rocks. -
Number and height of erosional pedestals or terracettes:
Pedestals are none to rare. Occurrence is usually limited to areas of water flow patterns. Frost heaving of shallow rooted plants should not be considered a "normal" condition. Terracettes are none to rae. -
Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
Bare Ground 30-40% depending on amount of surface rock fragments. -
Number of gullies and erosion associated with gullies:
None -
Extent of wind scoured, blowouts and/or depositional areas:
None -
Amount of litter movement (describe size and distance expected to travel):
Fine litter (foliage from grasses and annual & perennial forbs) expected to move distance of slope length during intense summer convection storms or rapid snowmelt events. Persistent litter (large woody material) will remain in place except during large rainfall events. -
Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
Soil stability values should be 3 to 6 for most surface soil textures found on this site. -
Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
Surface structure is typically moderate, medium platy or granular. Surface textures are typically loams or silt loams. Soil surface colors are grayish browns and soils are often typified by a thin mollic epipedon. Organic matter of the surface 2 to 3 inches is typically 1 to 1.5 percent dropping off quickly below. Organic matter content can be more or less depending on micro-topography. -
Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
Perennial herbaceous plants (especially deep-rooted bunchgrasses [i.e., bluebunch wheatgrass & Indian ricegrass] slow runoff and increase infiltration. Shrub canopy and associated litter break raindrop impact and provide for snow capture on the site. -
Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
Compacted layers are none. Subsoil calcic horizons or duripans are not to be interpreted as compacted layers. -
Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
Dominant:
Reference State: Deep-rooted, cool season, perennial bunchgrasses (bluebunch wheatgrass & Indian ricegrass) >> low shrubs (black sagebrushSub-dominant:
associated shrubs > shallow-rooted/rhizomatous, cool season, perennial bunchgrasses > deep-rooted, cool season, perennial forbs = fibrous, shallow-rooted, cool season, perennial and annual forbsOther:
evergreen trees, microbiotic crustsAdditional:
With an extended fire return interval, the shrub component will increase at the expense of the herbaceous component. Singleleaf pinyon and Utah juniper may eventually increase and dominate the site. -
Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
Dead branches within individual shrubs common and standing dead shrub canopy material may be as much as 20% of total woody canopy; some of the mature bunchgrasses (<10%) have dead centers. -
Average percent litter cover (%) and depth ( in):
Within plant interspaces (20-30%) and depth of litter is <¼ inch -
Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
For normal or average growing season (through mid-June) ± 600 lbs/ac. Favorable years ~800 lbs/ac and unfavorable years ~400 lbs/ac. -
Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
Potential invaders include cheatgrass, annual mustards, halogeton and Russian thistle. With a change in the historic fire return interval, singleleaf pinyon and Utah juniper can increase and dominate on this site. -
Perennial plant reproductive capability:
All functional groups should reproduce in average (or normal) and above average growing season years. Little growth or reproduction occurs in extreme drought years.
Print Options
Sections
Font
Other
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.
Click on box and path labels to scroll to the respective text.