Very Shallow To Moderately Deep Gravelly Slopes
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
- Transition T1 More details
- Transition T2 More details
- Restoration pathway 1 More details
-
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
State 1 represents the historic range of variability for this ecological site. This state no longer exists due to the ubiquitous naturalization of non-native species in the Mojave Desert. Periodic drought and rare fire were the natural disturbances influencing this ecological site. Fire would have been a very rare occurrence due to the lack of a continuous fine fuel layer between shrubs (Webb 1987). If we were to include dynamics for this state it would be similar to that displayed in State 2, but the Transition to State 3 would not be present.
Description
State 2 represents the current range of variability for this site. Non-native annuals, including red brome and red-stem stork’s bill (Erodium cicutarium) are naturalized in this plant community. Their abundance varies with precipitation, but they are at least sparsely present (as current year's growth or present in the soil seedbank).
Submodel
Description
This state develops when the fire return interval is less than 35 years. This state has been significantly altered from the natural range of variability found in States 1 and 2. Big galleta, non-native annual grasses, native sub-shrubs, and short-lived shrubs dominate the community. Annual grasses and forbs are abundant immediately post-fire, with dominance by big galleta, subshrubs and short-lived perennials several years post-fire.
Submodel
Mechanism
This transition occurred with the naturalization of non-native species in this ecological site. Non-native species were introduced with settlement of the Mojave Desert region in the 1860s. Post-settlement cattle and sheep grazing helped to spread and facilitate their establishment (Brooks and Pyke 2000, Brooks et al. 2007).
Mechanism
This Transition occurs when the fire return interval is less than 35 years.
Mechanism
Restoration of communities severely altered by repeat fire at the landscape scale is difficult. Methods may include aerial seeding of early native colonizers such as desert globemallow, big galleta, desert trumpet, brownplume wirelettuce, and desert marigold. Increased native cover may help to reduce non-native plant invasion, helps to stabilize soils, provides a source of food and cover for wildlife, and provides microsites that facilitate shrub colonization. However, the amount of seed required for success is often prohibitive. Large-scale planting of both early colonizers and community dominants tends to be more successful in terms of plant survival, especially if outplants receive supplemental watering during the first two years. Pre-emergent herbicides (Plateau) have been used in the year immediately post-fire to attempt to inhibit or reduce brome invasion. How successful this is on a landscape scale, and the non-target effects have not yet been determined.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.