Ecological dynamics
The Loess Breaks site developed under Northern Great Plains climatic conditions, light to severe grazing by bison and other large herbivores, sporadic natural or man-caused wildfires, and other biotic and abiotic factors which typically influence soil/site development. This continues to be a disturbance-driven site, by herbivory, fire, and variable climate. Changes occur in the plant communities due to weather variations, impacts of native and/or exotic plant and animal species, and management actions.
One of the primary impacts to this landscape introduced by European-man is season-long continuous grazing by domestic livestock. This management practice causes the repeated removal of the growing point and excessive defoliation of the leaf area of individual tall warm-season grasses. The resulting reduction of the ability of the plants to harvest sunlight depletes the root reserves, subsequently decreasing the root mass. This negatively impacts the ability of the plants to compete for life-sustaining nutrients, resulting in declining vigor and eventual mortality. The space created in the vegetative community is then occupied by a species that evades the negative grazing impacts by a growing season adaptation (such as a cool season), a shorter structure, or a reduced palatability mechanism. Because of the steepness of slope, the Loess Breaks site normally receives less grazing pressure than the less steep adjacent sites, but the degree of erosion is greatly accelerated if the stabilizing vegetative community is significantly degraded.
The State-and-Transition Model (STM) is depicted below, and is made up of a Reference State, a Native/Invaded State, and an Invaded Woody State. Each state represents the crossing of a major ecological threshold due to alteration of the functional dynamic properties of the ecosystem. The main properties observed to determine this change are the soil and vegetative communities and the hydrological cycle.
Each state may have one or more vegetative communities which fluctuate in species composition and abundance within the normal parameters of the state. Within each state, communities may degrade or recover in response to natural and man-caused disturbances such as variation in the degree and timing of herbivory, presence or absence of fire, and climatic and local fluctuations in the precipitation regime.
Interpretations are primarily based on the Reference State, and have been determined by study of rangeland relic areas, areas protected from excessive disturbance, and areas under long-term rotational grazing regimes. Trends in plant community dynamics have been interpreted from heavily grazed to lightly grazed areas, seasonal use pastures, and historical accounts. Plant communities, states, transitional pathways, and thresholds have been determined through similar studies and experience.
Growth of native cool-season plants begins about April 1, and continues to about June 15. Native warm-season plants begin growth about May 15, and continue to about August 15. Green-up of cool-season plants may occur in September and October if adequate moisture is available.
The species distribution and abundance on this site are also influenced by the degree of inclination and aspect of the local topography. Northern and eastern slopes typically are cooler and wetter, generally producing more biomass than the drier and warmer exposures. Severe inclines receive less grazing pressure than the more moderate slopes.
The following is a diagram illustrating the common plant communities that can occur on the site and the transition pathways between communities.
State 1
Reference State
This state describes the range of vegetative community phases that occur on the Loess Breaks site where the natural processes are mostly intact.
The Reference Community is a representation of the native plant community phase that occupies a site that has been minimally altered by management. The Degraded Native Grass, the At-Risk Native Grass, and the Excessive Litter Communities are the phases that result from management decisions that are unfavorable for a healthy Reference Community. The Ephemeral Forb Community is the result of a high intensity disturbance event.
High perennial grass cover and production allows for increased soil moisture retention, vegetative production, and overall soil quality.
Community 1.1
Mixed Native Grass
The Mixed Native Grass Community serves as a description of the native plant community that naturally occurs on the site when the natural disturbance regimes are intact, or closely mimicked by management practices. This phase is dynamic, with fluid relative abundance and spatial boundaries between the dominant structural vegetative groups. These fluctuations are primarily driven by different responses of the species to changes in precipitation timing and abundance, and fire and grazing events.
The potential vegetation consists of approximately 75-85 percent grasses and grass-like plants, 5-10 percent forbs, and 2-5 percent shrubs. Little bluestem, big bluestem, and sideoats grama are the primary mid and tall grass species in this community. Shortgrass species include blue grama, and hairy grama. Western wheatgrass occurs as a secondary species in the western portion of the MLRA. The site has a very diverse forb population.
This plant community is highly productive, diverse, and resistant to short term stresses such as drought and short periods of heavy stocking. The well-developed root systems support resiliency when allowed adequate recovery periods between grazing events.
When exposed to long-term or frequent over-grazing events without adequate rest, this plant community will degrade.
Total annual production ranges from 1,800 to 2,800 pounds of air dry vegetation per acre.
Table 5. Annual production by plant type
Plant type |
Low (lb/acre) |
Representative value (lb/acre) |
High (lb/acre) |
Grass/Grasslike |
1655 |
1891 |
2475 |
Forb |
105 |
159 |
215 |
Shrub/Vine |
40 |
74 |
110 |
Total |
1800 |
2124 |
2800 |
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Community 1.2
Degraded Native Grass Community
Little bluestem and sideoats grama are the dominant grasses. Big bluestem is declining, and this community phase signals a significant loss of production. This is due to continuous season-long grazing with inadequate recovery periods. Grazing-evasive warm-season and cool-season grasses increase. The composition of the forb component remains diverse, but the potential for encroachment by invasive woody species becomes more likely, due to fewer deep rooted species and a reduced fuel load to carry fire.
While this plant community is less productive and less diverse than the representative plant community, it remains sustainable in regards to site/soil stability, watershed function, and biologic integrity.
Total annual production ranges from 1,250 to 2,250 pounds of air dry vegetation per acre.
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Community 1.3
At-Risk Native Grass Community
In this plant community, the more palatable tall warm-season grasses have been reduced to remnant populations by continued defoliation during their critical growth periods. Grazing-evasive warm-season and cool-season grasses increase significantly. Blue grama, sideoats grama and composite dropseed are the dominant warm season grasses. Bluegrass encroachment also occurs on flatter slopes.
Soil health is affected by reduced efficiency in the nutrient, mineral, and hydrologic cycles as a result of decreases in plant litter and rooting depths. Total annual vegetative production declines to an average of 1,300 lbs./acre. Without a management change, this community is at-risk to degrade to the Native/Invaded Grass State.
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Community 1.4
Excessive Litter Community
The Excessive Litter Community Phase describes the response of the community to the removal of the natural disturbances of herbivory and fire. As the undisturbed duff layer deepens, infiltration of the precipitation is interrupted and evaporation increases significantly, simulating drought-like conditions.
Community 1.5
Ephemeral Forb Community
This community describes the flush of forbs that occurs in response to a major disturbance, or combination of disturbances. Growing season wildfire followed by hail, extreme prolonged drought, or extreme defoliation by herbivores are all examples of these disturbances. The native warm-season grasses re-establish dominance with-in a few years of the event.
Pathway CP 1.1-1.2
Community 1.1 to 1.2
A shift from the Mixed Native Grass to the Degraded Native Grass community occurs with continuous season long grazing and inadequate recovery periods during the growing season
Pathway CP 1.1-1.4
Community 1.1 to 1.4
Prolonged interruption of the natural disturbances of herbivory and fire will result in conversion from this community to the Excessive Litter Community.
Pathway CP 1.1-1.5
Community 1.1 to 1.5
A high-impact disturbance event or combination of events causing excessive defoliation of the vegetation, i.e. a growing season wildfire followed by a significant hailstorm, or a prolonged intensive grazing event or long-term drought, etc.
Pathway CP 1.2-1.3
Community 1.2 to 1.1
Maintaining continuous season long grazing with inadequate recovery periods during the growing season further degrades the site to the At-Risk Native Grass Community.
Pathway CP 1.3-1.2
Community 1.3 to 1.2
Reversing the downward trend to the previous community can be achieved with prescribed grazing early and late in the growing season to reduce undesirable cool season grasses. Targeting the peak growth period of cool season grasses with high intensity grazing events followed by rest will allow the tall native warm season grasses to rejuvenate. Appropriately timed prescribed fire will accelerate this process.
Access Control |
|
Prescribed Grazing |
|
Pathway CP 1.4-1.1
Community 1.4 to 1.1
Re-introduction of the natural processes of herbivory and fire will allow the vegetation to return to the previous community.
Pathway CP 1.4-1.2
Community 1.4 to 1.2
Re-introduction of the natural processes of herbivory and fire will allow the vegetation to return to the previous community.
Pathway CP 1.4-1.3
Community 1.4 to 1.3
A high-impact disturbance event, or combination of events causing excessive defoliation of the vegetation, i.e. a growing season wildfire followed by a significant hailstorm, or a prolonged intensive grazing event, or long-term drought, etc.
Pathway CP 1.4-1.5
Community 1.4 to 1.5
Re-introduction of the natural processes of herbivory and fire will allow the vegetation to return to the previous community.
Pathway CP 1.5-1.1
Community 1.5 to 1.1
Restoration occurs naturally once the disturbance event has subsided. Allowing growing season rest will accelerate the recovery.
Pathway CP 1.5-1.2
Community 1.5 to 1.2
Restoration occurs naturally once the disturbance event has subsided. Allowing growing season rest will accelerate the recovery.
Pathway CP 1.5-1.3
Community 1.5 to 1.3
Restoration occurs naturally once the disturbance event has subsided. Allowing growing season rest will accelerate the recovery.
State 2
Native/Invaded Grass State
This state has been degraded from the Reference State and much of the native warm-season grass community has been replaced by less desirable plants. The loss of tall and mid- warm-season grasses has negatively impacted energy flow and nutrient cycling. Water infiltration is reduced due to the shallow root system and rapid runoff characteristics of the grazing-evasive plant communities.
The Native Evaders/Invasives and the Smooth Bromegrass communities are the components of the Native/Invaded Grass State.
Community 2.1
Native Evaders/Invaded Grass
This plant community represents a shift from the Reference State across a plant community threshold. With continued grazing pressure, blue grama, Kentucky bluegrass, and composite dropseed will become the dominant plant species, with only trace remnants of the more palatable mid-warm-season grasses such as sideoats grama and little bluestem. Composite dropseed is a grazing-evasive warm-season mid-grass with low palatability. Continuous and heavy grazing pressure will maintain this plant community in a sod-bound condition. Forb richness and diversity has decreased.
With the decline and loss of deeper penetrating root systems, a compacted layer may form in the soil profile below the more shallow replacement root systems.
Grazing management practices that allow for adequate periods of recovery between grazing events will favor mid and tall warm-season grasses.
Appropriately timed prescribed fire will accelerate the restoration process.
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Community 2.2
Smooth Bromegrass
This plant community contains predominately smooth bromegrass but also contains some native warm-season grass remnants. Production of smooth bromegrass-dominated plant communities is highly variable, depending upon the percentages of composition present and outside inputs such as fertilizer and weed control. Clipping or ocular estimates of production should be conducted to verify current annual production.
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Pathway CP 2.1-2.2
Community 2.1 to 2.2
This community will be converted to a Smooth Bromegrass community through excessive warm season grazing with inadequate rest.
Pathway CP 2.2-2.1
Community 2.2 to 2.1
Restoration can be achieved by herbicide treatment and reseeding. If adequate native remnants are present, appropriately timed prescribed fire and a follow-up prescribed grazing program may achieve the desired results.
State 3
Invaded Woody State
Once the tree canopy cover reaches 15 percent with an average tree height exceeding 5 feet, the threshold is crossed to the Invaded Woody State. The primary coniferous interloper is Eastern redcedar. Locust, elm and green ash number among the deciduous native trees, along with several exotic introduced species. These woody species are encroaching due to lack of prescribed fire and other brush management practices. Typical ecological impacts are a loss of native warm season grasses, degraded forage productivity and reduced soil quality.
This state consists of the Eastern Red Cedar/Locust Community.
Community 3.1
Eastern Red Cedar/Locust
This community has at least a 15 percent canopy of Eastern redcedar. Honey locust encroachment may occur in the eastern portion of the MLRA, when brush management and prescribed burning is absent over an extended period of time. Generally this site is very conducive to cedar seedling invasion especially when adjacent to a seed source. Cedars will eventually dominate the site, resulting in a closed canopy, reduced forage production and limited livestock grazing and wildlife habitat value.
Eastern redcedar control can usually be accomplished with prescribed burning while the trees are six foot tall or less and fine fuel production is over 1,500 pounds per acre. Trees of all heights can be controlled with the use of specifically adapted preparation, and ignition and holding techniques.
Mechanical removal followed by a chemical treatment on stumps is effective on locust.
Total annual production during an average year varies significantly, depending on the production level prior to encroachment and the percentage of canopy cover.
Jan |
Feb |
Mar |
Apr |
May |
Jun |
Jul |
Aug |
Sep |
Oct |
Nov |
Dec |
J |
F |
M |
A |
M |
J |
J |
A |
S |
O |
N |
D |
Transition T1-2
State 1 to 2
Heavy grazing without adequate recovery periods will cause this state to lose a significant proportion of tall and mid- warm-season grass species and cross a threshold to the Native/Invaded State. Water infiltration and other hydrologic functions will be reduced due to the root matting presence of sod-forming grasses. With the decline and loss of deeper penetrating root systems, soil structure and biological integrity are catastrophically degraded to the point that recovery is unlikely. Once this occurs, it is highly unlikely that grazing management alone will return the community to the Reference State.
Transition T1-3
State 1 to 3
Disruption of the natural fire regime and the planting of invasive exotic and native woody species can cause this state to shift to the Invaded Woody State.
Transition T 2-3
State 2 to 3
Disruption of the natural fire regime and the planting of invasive exotic and native woody species can cause this state to shift to the Invaded Woody State.
Restoration pathway R 1,2
State 3 to 1
Prescribed burning, wildfire, harvest, and brush management will move this plant community toward one of the herbaceous plant dominated plant communities. The forb component of a site with heavy tree density or canopy cover will initially increase following tree removal through mechanical brush management treatments and prescribed fire.
If re-sprouting brush such as Honey locust or Siberian elm is present, stumps must be chemically treated immediately after mechanical removal. Ongoing brush management such as hand cutting, chemical spot treatments or periodic prescribed burning is required to prevent a return to this state.
Brush Management |
|
Prescribed Burning |
|
Prescribed Grazing |
|