Natural Resources
Conservation Service
Ecological site F090AY005WI
Wet Sandy Lowland
Last updated: 10/02/2023
Accessed: 11/21/2024
General information
Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.
MLRA notes
Major Land Resource Area (MLRA): 090A–Wisconsin and Minnesota Thin Loess and Till
MLRA 90A is part of the recently glaciated till and outwash plains of central Minnesota and northern Wisconsin. The area was covered with loamy alluvium or loess after glaciation. It is in Wisconsin (56 percent), Minnesota (40 percent), and Michigan (4 percent). It makes up about 21,967 square miles (56,901 square kilometers).
This MLRA has distinct boundaries to the north where it borders tills of a dissimilar origin on the less morainic landscapes of MLRAs 88, 92, and 93A. The boundary to the west is where the MLRA transitions to the calcareous tills of the Des Moines Lobe, in MLRA 57. To the south, MLRA 90A borders MLRA 90B, which has older soils and better-defined drainage patterns, and MLRA 91, which has the distinct lower landscape relief of an outwash channel.
The part of this area in Minnesota is mostly in the Western Lake section of the Central Lowland province of the Interior Plains. Nearly all the parts in Wisconsin and Michigan are in the Superior Upland province of the Laurentian Upland. Four distinct lobes of the Laurentide Ice Sheet (Rainy, Superior, Chippewa, and Green Bay) played major roles in shaping the landscape in this area. The landscape is characterized by gently undulating to rolling, loess-mantled till plains, drumlin fields, and end moraines mixed with outwash plains associated with major glacial drainageways, swamps, bogs, and fens. In some areas lake plains and ice-walled lakes are significant. Steeper areas occur mostly as valley side slopes along flood plains and as escarpments along the margins of lakes.
Lakes, ponds, and marshes are common throughout the area, and streams generally have a dendritic pattern. The major rivers in this area are the Chippewa, St. Croix, Mississippi, and Wisconsin Rivers. Elevation ranges from 1,100 to 1,950 feet (335 to 595 meters). Local relief is mainly less than 10 feet to 20 feet (3 to 6 meters), but some major valleys and hills are 200 feet (60 meters) above the adjacent lowland.
Precambrian-age bedrock underlies most of the glacial deposits in this MLRA. The bedrock is a complex of folded and faulted igneous and metamorphic rocks. The bedrock terrain has been modified by glaciation and is covered in most areas by Pleistocene deposits and windblown silts. The glacial deposits form an almost continuous cover in most areas. The drift is several hundred feet thick in many areas. Loess covered the area shortly after the glacial ice melted.
Ground water is abundant in deep glacial deposits in most of this area. It also occurs in sedimentary and volcanic rock in the western part of the area. It is scarce where the layer of drift is thin. The water meets the domestic, agricultural, municipal, industrial, rural, and irrigation needs of the area. The content of dissolved solids in the ground water from all the various aquifers in this area is low, and the water generally is moderately hard or hard. The level of total dissolved solids in some of the water can be much higher because of a high content of limestone in some of the glacial deposits. Most of this area obtains ground water from unconsolidated glacial sand and gravel deposits on or very near the surface. Some wells tap the Cambrian sandstone in the southwestern part of the area, in Wisconsin.
In northwest Wisconsin (Ashland and Bayfield Counties) where there are no glacial deposits and in much of the part of this area in Minnesota, ground water from sedimentary and volcanic rock aquifers is used. This water is of very good quality; however, many soils have very porous layers that are poor filters of domestic waste and agricultural chemicals, so there is a risk of contamination from development and agriculture. Minor water concerns are hardness and, in some areas, high concentrations of iron. Yields of water from the glacial deposits vary.
The dominant soil orders are Alfisols, Entisols, Histosols, and Spodosols. The soils in the area have a frigid temperature regime, a udic or aquic moisture regime, and mixed mineralogy.
This area has a significant acreage of public and private forestland used to support the paper and lumber industry Sap collection from sugar maple and syrup production are important forestry enterprises. Agricultural enterprises include row crops, dairy farms, and beef operations. Crops include corn, soybeans, oats, wheat, and alfalfa. Tourism, recreation, and wildlife management are important. Hunting, fishing, snowmobiling, hiking, and skiing are popular activities because of the area’s abundance of water, the many acres of national and county forests, and public hunting grounds. (United States Department of Agriculture, Natural Resources Conservation Service, 2022)
Classification relationships
Major Land Resource Area (MLRA 90A): Wisconsin and Minnesota Thin Loess and Till
USFS Subregions: Rib Mountain Rolling Ridges (212Qd), Green Bay Lobe Stagnation Moraine (212Ta), Brule and Paint Rivers Drumlinized Ground Moraine (212Xc), St. Croix Moraine (212Qa), Glidden Loamy Drift Plain (212Xa)
Small sections occur in Central-Northwest Wisconsin Loess Plains (212Xd) and Rosemont Baldwin Plains and Moraines (222Md)
Wisconsin DNR Ecological Landscapes: Forest Transition, North Central Forest
Ecological site concept
The Wet Sandy Lowland ecological site occurs primarily in the southeast portion of MLRA 90A in depressions and drainageways on outwash plains, floodplains, and stream terraces. These sites are characterized by very deep, very poorly or poorly drained soils that formed in sandy outwash, lacustrine, or alluvium deposits. Sites are subject to frequent ponding or flooding during the spring and fall. Soils remain saturated for long periods during the growing season and meet hydric soil requirements. Precipitation, runoff from adjacent uplands, groundwater discharge, and stream inflow are the primary sources of water. Soils range from extremely acid to neutral.
Wet Sandy Lowland are differentiated from other ecological sites by its deep sandy deposits and very poorly or poorly drained soils. Other very poorly or poorly drained sites have loamy or clayey deposits. These sites have lower pH and available water capacity than their loamy and clayey counterparts, which can limit vegetative growth.
Associated sites
F090AY001WI |
Poor Fen Poor Fen sites consist of deep herbaceous organic materials. Some sites have mineral soil contact. They are very poorly drained and remain saturated throughout the year. They are strongly to extremely acidic. These sites are permanently saturated wetlands. They are wetter and occur lower on the drainage sequence than Wet Sandy Lowlands. |
---|---|
F090AY009WI |
Moist Sandy Upland Moist Sandy Lowland primarily consist of deep, sandy deposits from outwash, alluvium, lacustrine, and till. They sandy deposits may have a loamy mantle or be underlain by loamy deposits. The finer materials can cause episaturation and allow the site to remain moist for some of the growing season. They are somewhat drier and occur higher on the drainage sequence than Wet Sandy Lowlands. |
F090AY013WI |
Sandy Upland Sandy Upland consist of deep sandy and loamy deposits of outwash, alluvium, till, and residuum. Soils are primarily sand and loamy sand and have a seasonally high water table within two meters, though they don't remain saturated for extended periods. They are drier and occur higher on the drainage sequence than Wet Sandy Lowlands. |
F090AY019WI |
Dry Sandy Upland Dry Sandy Uplands consist of primarily sandy deposits of various origin. Loamy deposits are also present in many soils. They may have a seasonally high water table within two meters of the surface, though they do not remain saturated for sustained periods. They are much drier and occur higher on the drainage sequence than Wet Sandy Lowlands. |
Similar sites
F090AY003WI |
Sandy Floodplain Sandy Floodplain sites are found exclusively on floodplains in sandy and sometimes silty alluvium. These sites are somewhat poorly to poorly drained and are subject to flooding. Some sites may be saturated for long enough for hydric conditions to occur. These sites are found on different landforms, but they share their particle size class and drainage capability. Sandy Floodplain can support similar vegetative communities as Wet Sandy Lowland. |
---|---|
F090AY006WI |
Wet Loamy Lowland Wet Loamy Lowland consist primarily of deep loamy deposits derived from a mixture of outwash, alluvium, loess, and lacustrine sources. Some sites may have bedrock contact within two meters of the surface. These sites are seasonally ponded depressions that remain saturated for sustained periods, allowing hydric conditions to occur. They are found in similar landforms as Wet Sandy Lowland and have similar drainage capabilities but with finer textures. These sites can support vegetative communities with higher nutrient demand. |
F090AY009WI |
Moist Sandy Upland Moist Sandy Lowland primarily consist of deep, sandy deposits from outwash, alluvium, lacustrine, and till. They sandy deposits may have a loamy mantle or be underlain by loamy deposits. The finer materials can cause episaturation and allow the site to remain moist for some of the growing season, though they are not subject to ponding. The vegetative communities they support may be similar to those found on Wet Sandy Lowland. |
Table 1. Dominant plant species
Tree |
(1) Acer rubrum |
---|---|
Shrub |
(1) Cornus canadensis |
Herbaceous |
(1) Osmunda cinnamomea |
Click on box and path labels to scroll to the respective text.
Ecosystem states
T1A | - | Stand replacing disturbance that includes fire. |
---|---|---|
T1B | - | Removal of forest cover and tilling for agricultural crop production. |
R2A | - | Conifers slowly increase in abundance in the deciduous forest community. |
T2A | - | Removal of forest cover and tilling for agricultural crop production. |
R3A | - | Cessation of agricultural practices leads to natural reforestation, or site is replanted. |
T3B | - | Cessation of agricultural practices leads to natural reforestation, or site is replanted. |
State 1 submodel, plant communities
1.1A | - | Light to moderate intensity fires, blow-downs, ice storms. |
---|---|---|
1.2A | - | Disturbance-free period for 30+ years. |