Ecological dynamics
The information in this Ecological Site Description, including the state-and-transition model (STM), was developed based on historical data, current field data, professional experience, and a review of the scientific literature. As a result, all possible scenarios or plant species may not be included. Key indicator plant species, disturbances, and ecological processes are described to inform land management decisions.
The MLRA lies within the transition zone between the eastern deciduous forests and the tallgrass prairies. The heterogeneous topography of the area results in variable microclimates and fuel matrices that in turn are able to support prairies, savannas, woodlands, and forests. Wet Terrace Sedge Meadows form an aspect of this vegetative continuum. This ecological site occurs on low stream terraces in river valleys on poorly-drained soils. Species characteristic of this ecological site consist of hydrophytic, herbaceous vegetation.
Flooding and fire are the most important ecosystem drivers for maintaining this ecological site. The frequency and duration of flooding affect species composition, cover, and vegetative production due to alternating aerobic and anaerobic surface substrate conditions. Replacement fires likely occurred on a regular rotation interval and helped to reduce the accumulation of peat. The combination of fire and saturated soil conditions prevented the establishment of shrubs for any significant amount of time.
Drought has also played a role in shaping this ecological site. The periodic episodes of reduced soil moisture in conjunction with the poorly-drained soils have favored the proliferation of plant species tolerant of such conditions. Drought can slow the growth of plants and result in dieback of certain species. When coupled with fire, periods of drought can eliminate or greatly reduce the occurrence of woody vegetation, substantially altering the extent of shrubs and trees (Pyne et al. 1996).
Today, Wet Terrace Sedge Meadows have been greatly reduced as the land has mostly been converted to agricultural production. Corn (Zea mays L.) and soybeans (Glycine max (L.) Merr.) are the dominant crops grown, but patches of forage land are also present on the landscape. A return to the historic plant community is likely not possible due to significant hydrologic and water quality changes in the watershed, but long-term conservation agriculture or habitat reconstruction efforts can help to restore some natural diversity and ecological functioning. The state-and-transition model that follows provides a detailed description of each state, community phase, pathway, and transition. This model is based on available experimental research, field observations, literature reviews, professional consensus, and interpretations.
State 1
Reference State
The reference plant community is categorized as a sedge meadow community, dominated by hydrophytic, herbaceous vegetation. The two community phases within the reference state are dependent on flooding and periodic fire. The frequency and duration of flooding alter species composition, cover, and extent, while periodic fires prevent woody species from dominating. Drought and herbivory have more localized impacts in the reference phases, but do contribute to overall species composition, diversity, cover, and productivity.
Community 1.1
False Indigo Bush/Woolly Sedge – Rice Cutgrass
This reference community phase represents natural succession as a result of an extended fire return interval. Shrubs, such as false indigo bush (Amorpha fruticosa L.) and gray dogwood (Cornus racemosa Du Lam.), can form a scattered canopy across the sedge meadow. The prolonged absence of fire will maintain this state, but a replacement fire will shift the community back to phase 1.1.
Community 1.2
Woolly Sedge – Rice Cutgrass
Sites in this reference community phase are composed of sedges and hydrophytic grasses and forbs. Vegetative cover is generally continuous and dense with plants reaching heights between 1.5 and 5 feet tall (NatureServe 2015). Woolly sedge and rice cutgrass are the dominant species, but other sedges can be present including yellowfruit sedge, smoothcone sedge, broom sedge, and blunt broom sedge. Common forbs may include white doll’s daisy (Boltonia asteroids (L.) L’Hér), Shreve’s iris (Iris virginica L. var. shrevei (Small) E.S. Anderson), and American water horehound (Lycopus americanus Muhl. ex W.P.C. Barton). Seasonal flooding maintains the wetland plant community, while periodic fires maintain the herbaceous dominance. However, an extended fire return interval allows some wetland shrubs to establish shifting the community to phase
Pathway 1.1A
Community 1.1 to 1.2
Extended fire return interval.
Pathway 1.2A
Community 1.2 to 1.1
Replacement fire.
State 2
Hydrologically-altered State
Hydrology is the most important determinant of wetlands and wetland processes. Hydrology modifies and determines the physiochemical environment (i.e., sediments, soil chemistry, water chemistry) which in turn directly affects the vegetation, animals, and microbes (Mitsch and Gosselink 2007). Human activities on landscape hydrology have greatly altered Wet Floodplains Sedge Meadows. Alterations such as agricultural tile draining and conversion to cropland on adjacent lands have changed the natural hydroperiod, increased the rate of sedimentation, and intensified nutrient pollution (Werner and Zedler 2003; Mitsch and Gosselink 2007).
Community 2.1
Reed Canarygrass – Woolly Sedge
This community phase represents the early changes to the natural wetland hydroperiod, sedimentation, and nutrient runoff. Sedimentation results in a reduction of soil organic matter and high dry bulk density. It also leads to a homogenization of the local microtopography, reducing the surface area and associated species diversity (Green and Galatowitsch 2002; Werner and Zedler 2002). Native sedges continue to form a component of the herbaceous layer, but the highly-invasive reed canarygrass (Phalaris arundinacea L.) co-dominates.
Community 2.2
Reed Canarygrass
Sites falling into this community phase have experienced significant sedimentation and are dominated by a monoculture of reed canarygrass (NatureServe 2015). Reed canarygrass stands can significantly alter the physiochemical environment as well as the biotic communities, making the site only suitable to reed canarygrass. These monotypic stands create a positive feedback loop that perpetuates increasing sedimentation, altered hydrology, and dominance by this non-native species, especially in sites affected by nutrient enrichment from agricultural runoff (Vitousek 1995; Bernard and Lauve 1995; Green and Galatowitsch 2002; Werner and Zedler 2002; Kercher et al. 2007; Waggy 2010).
Pathway 2.1A
Community 2.1 to 2.2
Continuing alterations to the natural hydrology and increasing sedimentation.
State 3
Forage State
The forage state occurs when the site is converted to a farming operation that emphasizes domestic livestock production known as grassland agriculture. Fire suppression, periodic cultural treatments (e.g., clipping, drainage, soil amendment applications, planting new species and/or cultivars, mechanical harvesting) and grazing by domesticated livestock transition and maintain this state (USDA-NRCS 2003). Early settlers seeded non-native species, such as smooth brome (Bromus inermis Leyss.) and Kentucky bluegrass (Poa pratensis L.), to help extend the grazing season (Smith 1998). Over time, as lands were continuously harvested or grazed by herds of cattle, the non-native species were able to spread and expand across the landscape, reducing the native species diversity and ecological function.
Community 3.1
Hayfield
Sites in this community phase consist of forage plants that are planted and mechanically harvested. Mechanical harvesting removes much of the aboveground biomass and nutrients that feed the soil microorganisms (Franzluebbers et al. 2000; USDA-NRCS 2003). As a result, soil biology is reduced leading to decreases in nutrient uptake by plants, soil organic matter, and soil aggregation. Frequent biomass removal can also reduce the site’s carbon sequestration capacity (Skinner 2008).
Community 3.2
Continuous Pastured Grazing
This community phase is characterized by continuous grazing where domestic livestock graze a pasture for the entire season. Depending on stocking density, this can result in lower forage quality and productivity, weed invasions, and uneven pasture use. Continuous grazing can also increase the amount of bare ground and erosion and reduce soil organic matter, cation exchange capacity, water-holding capacity, and nutrient availability and retention (Bharati et al. 2002; Leake et al. 2004; Teague et al. 2011). Smooth brome, Kentucky bluegrass, and white clover (Trifolium repens L.) are common pasture species used in this phase. Their tolerance to continuous grazing has allowed these species to dominate, sometimes completely excluding the native vegetation.
Community 3.3
Periodic-rest Pastured Grazing
This community phase is characterized by periodic-rest grazing where the pasture has been subdivided into several smaller paddocks. Subdividing the pasture in this way allows livestock to utilize one or a few paddocks, while the remaining area is rested allowing plants to restore vigor and energy reserves, deepen root systems, develop seeds, as well as allow seedling establishment (Undersander et al. 2002; USDA-NRCS 2003). Periodic-rest pastured grazing includes deferred periods, rest periods, and periods of high intensity – low frequency, and short duration methods. Vegetation is generally more diverse and can include orchardgrass (Dactylis glomerata L.), timothy (Phleum pretense L.), red clover (Trifolium pratense L.), and alfalfa (Medicago sativa L.). The addition of native prairie species can further bolster plant diversity and, in turn, soil function. This community phase promotes numerous ecosystem benefits including increasing biodiversity, preventing soil erosion, maintaining and enhancing soil quality, sequestering atmospheric carbon, and improving water yield and quality (USDA-NRCS 2003).
Pathway 3.1A
Community 3.1 to 3.2
Mechanical harvesting is replaced with domestic livestock utilizing continuous grazing.
Pathway 3.1B
Community 3.1 to 3.3
Mechanical harvesting is replaced with domestic livestock utilizing periodic-rest grazing.
Pathway 3.2A
Community 3.2 to 3.1
Domestic livestock are removed, and mechanical harvesting is implemented.
Pathway 3.2B
Community 3.2 to 3.3
Periodic-rest grazing replaces continuous grazing.
Pathway 3.3B
Community 3.3 to 3.1
Domestic livestock are removed, and mechanical harvesting is implemented.
Pathway 3.3A
Community 3.3 to 3.2
Continuous grazing replaces periodic-rest grazing.
State 4
Cropland State
The low topographic relief across the MLRA has resulted in nearly the entire area being converted to agriculture (Eilers and Roosa 1994). The continuous use of tillage, row-crop planting, and chemicals (i.e., herbicides, fertilizers, etc.) has effectively eliminated the reference community and many of its natural ecological functions in favor of crop production. Corn and soybeans are the dominant crops for the site, and oats (Avena L.) and alfalfa (Medicago sativa L.) may be rotated periodically. These areas are likely to remain in crop production for the foreseeable future.
Community 4.1
Conventional Tillage Field
Sites in this community phase typically consist of monoculture row-cropping maintained by conventional tillage practices. They are cropped in either continuous corn or alternating periods of corn and soybean crops. The frequent use of deep tillage, low crop diversity, and bare soil conditions during the non-growing season negatively impacts soil health. Under these practices, soil aggregation is reduced or destroyed, soil organic matter is reduced, erosion and runoff are increased, and infiltration is decreased, which can ultimately lead to undesirable changes in the hydrology of the watershed (Tomer et al. 2005).
Community 4.2
Conservation Tillage Field
This community phase is characterized by periodically alternating crops and utilizing various conservation tillage methods to promote soil health and reduce erosion. Conservation tillage methods include strip-till, ridge-till, vertical-till, or no-till planting operations. Strip-till keeps seedbed preparation to narrow bands less than one-third the width of the row where crop residue and soil consolidation are left undisturbed in-between seedbed areas. Strip-till planting may be completed in the fall and nutrient application either occurs simultaneously or at the time of planting. Ridge-till uses specialized equipment to create ridges in the seedbed and vegetative residue is left on the surface in between the ridges. Weeds are controlled with herbicides and/or cultivation, seedbed ridges are rebuilt during cultivation, and soils are left undisturbed from harvest to planting. Vertical-till operations employ machinery that lightly tills the soil and cuts up crop residue, mixing some of the residue into the top few inches of the soil while leaving a large portion on the surface. No-till management is the most conservative, disturbing soils only at the time of planting and fertilizer application. Compared to conventional tillage operations, conservation tillage methods can improve soil ecosystem function by reducing soil erosion, increasing organic matter and water availability, improving water quality, and reducing soil compaction.
Community 4.3
Conservation Tillage with Cover Crop Field
This community phase applies conservation tillage methods as described above as well as adds cover crop practices. Cover crops typically include nitrogen-fixing species (e.g., legumes), small grains (e.g., rye, wheat, oats), or forage covers (e.g., turnips, radishes, rapeseed). The addition of cover crops not only adds plant diversity but also promotes soil health by reducing soil erosion, limiting nitrogen leaching, suppressing weeds, increasing soil organic matter, and improving the overall soil ecosystem. In the case of small grain cover crops, surface cover and water infiltration are increased, while forage covers can be used to graze livestock or support local wildlife. Of the three community phases for this state, this phase promotes the greatest soil sustainability and improves ecological functioning within a row crop operation.
Pathway 4.1A
Community 4.1 to 4.2
Tillage operations are greatly reduced, alternating crops occurs on a regular interval, and crop residue remains on the soil surface.
Pathway 4.1B
Community 4.1 to 4.3
Tillage operations are greatly reduced or eliminated, alternating crops occurs on a regular interval, crop residue remains on the soil surface, and cover crops are planted following crop harvest.
Pathway 4.2A
Community 4.2 to 4.1
Intensive tillage is utilized, and monoculture row-cropping is established.
Pathway 4.2B
Community 4.2 to 4.3
Cover crops are implemented to minimize soil erosion.
Pathway 4.3B
Community 4.3 to 4.1
Intensive tillage is utilized, cover crops practices are abandoned, monoculture row-cropping is established on a more-or-less continuous basis.
Pathway 4.3A
Community 4.3 to 4.2
Cover crop practices are abandoned.
State 5
Reconstructed Sedge Meadow State
Sedge meadow habitats provide multiple ecosystem services including flood abatement, water quality improvement, and biodiversity support. However, many sedge meadow communities have been stressed from watershed-scale changes in hydrology or eliminated as a result of type conversions to agricultural production, thereby significantly reducing these services (Zedler 2003). The extensive alterations of lands adjacent to Wet Floodplain Sedge Meadows may not allow for restoration back to the historic reference condition. However, ecological reconstruction can aim to aid the recovery of degraded, damaged or destroyed functions. A successful reconstruction will have the ability to structurally and functionally sustain itself, demonstrate resilience to the natural ranges of stress and disturbance, and create and maintain positive biotic and abiotic interactions (SER 2002; Mitsch and Jørgensen 2004).
Community 5.1
Early Successional Sedge Meadow
This community phase represents the early community assembly from sedge meadow reconstruction and is highly dependent on seed viability, hydroperiod, soil organic matter content, and site preparation. Successful establishment of sedges can be maximized by using seed collected during the same growing season, utilizing genotypes adapted to the environmental location, ensuring soil moisture is saturated at the time of seeding, and improving the water holding capacity and fertility of the soil (Budelsky and Galatowitsch 1999; van der Valk et al. 1999; Mitsch and Gosselink 2007; Hall and Zedler 2010). In addition, suppression and removal of non-native species is essential for reducing competition (Perry and Galatowitsch 2003).
Community 5.2
Late Successional Sedge Meadow
Appropriately timed disturbance regimes (e.g., hydroperiod, prescribed fire) and nutrient management applied to the early successional community phase can help increase the species richness, pushing the site into a late successional community phase over time (Mitsch and Gosselink 2007).
Pathway 5.1A
Community 5.1 to 5.2
Maintenance of proper hydrology and nutrient balances in line with a developed wetland management plant.
Pathway 5.2A
Community 5.2 to 5.1
Reconstruction experiences a setback from extreme weather event or improper timing of management actions.
Transition T1A
State 1 to 2
Direct and indirect alterations to the landscape hydrology from human-induced land development transition the site to the hydrologically-altered state (2).
Transition T1B
State 1 to 3
Cultural treatments to enhance forage quality and yield transition the site to the forage state (3).
Transition T1C
State 1 to 4
Installation of drain tiles, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (4).
Transition T2A
State 2 to 3
Cultural treatments to enhance forage quality and yield transition the site to the forage state (3).
Transition T2B
State 2 to 4
Installation of drain tiles, seeding of agricultural crops, and non-selective herbicide transition the site to the cropland state (4).
Restoration pathway R2A
State 2 to 5
Hydroperiod restoration, site preparation, non-native species control, and seeding native species transition the site to the reconstructed sedge meadow state (5).
Transition T3A
State 3 to 2
Land abandonment transitions the site to the hydrologically-altered state (2).
Transition T3B
State 3 to 4
Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (4).
Restoration pathway R3A
State 3 to 5
Site preparation, tree planting, invasive species control, and seeding native species transition this site to the reconstructed sedge meadow state (5).
Transition T4A
State 4 to 2
Land abandonment transitions the site to the hydrologically-altered state (2).
Transition T4B
State 4 to 3
Cultural treatments to enhance forage quality and yield transitions the site to the forage state (3).
Restoration pathway R4A
State 4 to 5
Site preparation, tree planting, invasive species control, and seeding native species transition this site to the reconstructed sedge meadow state (5).
Transition T5A
State 5 to 2
Fire suppression and removal of active management transitions this site to the hydrologically-altered state (2).
Transition T5B
State 5 to 3
Cultural treatments to enhance forage quality and yield transition the site to the forage state (3).
Transition T5C
State 5 to 4
Tillage, seeding of agricultural crops, and non-selective herbicide transition this site to the cropland state (4).