Silty Floodplain
Scenario model
Current ecosystem state
Select a state
Management practices/drivers
Select a transition or restoration pathway
-
Transition T1A
Large scale disturbance
More details -
Transition T1C
Clearing of site; agricultural production - forage
More details -
Transition T1B
Clearing of site; agricultural production -row crops.
More details -
Restoration pathway R2A
Restoration inputs such as planting, brush control, prescribed fire, and timber stand improvement.
More details -
Transition T2B
Clearing; agricultural production - forage
More details -
Transition T2C
Clearing; agricultural production - row crops
More details -
Transition T3B
Abandonment of agricultural practices
More details -
Transition T3A
Site preparation and tillage, seeding, weed control, cropland management
More details -
Transition T4A
Transition site to forage production; seeding; weed/brush control; pasture management.
More details -
No transition or restoration pathway between the selected states has been described
Target ecosystem state
Select a state
Description
The historic reference state for this ecological site was an old-growth riverine deciduous forest with maximum trees ages in excess of 100 years old. Sites were disturbed periodically via flooding but the overall, these communities were stable and long-lived.
Numerous species were co-dominant on these sites including American sycamore, black walnut, American elm, common hackberry, black walnut, white ash, and multiple species of maple and oaks. Few undisturbed sites remain today as agriculture, urban development and hydrological modifications have altered site ecology.
Submodel
Description
Most remaining Silty Floodplain Forest sites have been altered due to disturbances including hydrological modification, clearing, logging, grazing, and development. Remaining wooded sites may be in various stages of succession with a variety of trees depending on seed sources and severity of disturbance. Introduction of non-native plant species to these sites is not uncommon, and without management control, these invasive plants can alter the plant community. Disturbed Silty Floodplain sites are often eventually transitioned to Pastureland (State 3) or cropland (State 4).
Submodel
Description
A portion of these sites have been converted to pastureland or forage production. Species selection will depend upon the objectives and goals of the landowner; however, commonly planted grasses include tall fescue (Schedonorus arundinaceus), brome (Bromus spp.), white clover (Trifolium repens) and red clover (Trifolium pratense). Species health and productivity are determined by the management and long-term overgrazing on some sites has caused soil erosion and compaction. Hydrological modifications may be utilized on some sites to improve drainage.
Submodel
Description
Common crops include corn (Zea mays), soybeans (Glycine max), and occasionally winter wheat (Triticum aestivum). Some landowners choose to convert sites to cool season grasses for a period before resuming cropland production. Hydrological modifications such as ditching and tiling may be installed on some sites to increase crop production.
A return to the historical Reference State from State 4 is unlikely, if not impossible.
Submodel
Mechanism
Substantial disturbances, such as logging or clearing, will transition this site to State 2.
Mechanism
Site is transitioned to an agricultural site focused on forage production. Management inputs would include clearing, site preparation, seeding and weed/brush control. Hydrology may be altered.
Mechanism
Site is transitioned to an agricultural site focused on row crop production. Management inputs would include clearing, site preparation, seeding and weed control. Hydrological modifications may be installed to aid in drainage.
Mechanism
Restoration would require long-term management inputs including planting of desired species, weed control, brush control, timber stand improvement, and prescribed fire.
Mechanism
Site is cleared and forage/pasture production is initiated. Management inputs would include tree/shrub removal, site preparation, seeding, and weed/brush control.
Mechanism
Site is cleared and row crop production is initiated. Management inputs would include tree/shrub removal, site preparation, tillage, seeding, and weed control. Hydrological modifications may be installed (ditching or tiling).
Mechanism
Site is abandoned and slowly would transition to a wooded state dominated by deciduous trees. Species on site would depend on the severity and length of disturbance and available seed sources.
Mechanism
Management inputs that transition a site from pasture or forage production to a site that is utilized for row crop production. Hydrological modifications may be installed depending on slope and drainage needs.
Model keys
Briefcase
Add ecological sites and Major Land Resource Areas to your briefcase by clicking on the briefcase () icon wherever it occurs. Drag and drop items to reorder. Cookies are used to store briefcase items between browsing sessions. Because of this, the number of items that can be added to your briefcase is limited, and briefcase items added on one device and browser cannot be accessed from another device or browser. Users who do not wish to place cookies on their devices should not use the briefcase tool. Briefcase cookies serve no other purpose than described here and are deleted whenever browsing history is cleared.
Ecological sites
Major Land Resource Areas
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.