Ecological dynamics
Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.
The reference plant community is well developed woodland dominated by an overstory of white oak, along with black oak and an occasional northern red oak. The canopy is relatively tall (70 to 90 feet) but less dense (65 to 85 percent closure) and less structurally diverse than nearby protected slopes. Increased light from a more open canopy causes a diversity of woodland ground flora species to flourish. Woodlands are distinguished from forest, by their relatively open understory, and the presence of sun-loving ground flora species. Characteristic plants in the ground flora can be used to gauge the restoration potential of a stand along with remnant open-grown old-age trees, and tree height growth.
Despite being somewhat distant from prairies, fire played a significant role in the maintenance of these systems. It is likely that these ecological sites burned at least once every 10 to 15 years. These periodic fires kept woodlands open, removed the litter, and stimulated the growth and flowering of the grasses and forbs. During fire free intervals, woody understory species increased and the herbaceous understory diminished. The return of fire would open the woodlands up again and stimulate the abundant ground flora.
Deep Loess Exposed Backslope Woodlands were also subjected to occasional disturbances from wind and ice, as well as grazing by native large herbivores. Wind and ice would have periodically opened the canopy up by knocking over trees or breaking substantial branches off canopy trees. Grazing by large native herbivores, such as bison, elk, and deer, would have effectively kept understory conditions more open, creating conditions more favorable to oak reproduction and woodland ground flora species.
Today, these ecological sites have been cleared and converted to pasture or have undergone repeated timber harvest and domestic grazing. Most existing forested ecological sites have a younger (50 to 80 years) canopy layer whose species composition and quality has been altered by timber harvesting practices.
In the long term absence of fire, woody species, especially hickory, encroach into these woodlands. Once established, these woody plants can quickly fill the existing understory increasing shade levels with a greatly diminished ground flora. Removal of the younger understory and the application of prescribed fire have proven to be effective restoration means.
Uncontrolled domestic grazing has also impacted these communities, further diminishing the diversity of native plants and introducing species that are tolerant of grazing, such as buckbrush, gooseberry, and Virginia creeper. Grazed sites also have a more open understory in addition to soil compaction and soil erosion problems and lower site productivity.
This ecological site is productive. Oak regeneration is typically problematic. Sugar maple, red elm, and hickories are often dominant competitors in the understory. Maintenance of the oak component will require disturbances that will encourage more sun adapted species and reduce shading effects.
Single tree selection timber harvests are common in this region and often results in removal of the most productive trees (high grading) in the stand leading to poorer quality timber and a shift in species composition away from more valuable oak species. Better planned single tree selection or the creation of group openings can help regenerate and maintain more desirable oak species and increase vigor on the residual trees.
Clearcutting also occurs and results in dense, even-aged stands dominated by oak. This may be most beneficial for existing stands whose composition has been highly altered by past management practices. However, without some thinning of the dense stands and the application of prescribed fire, the ground flora diversity can be shaded out and diversity of the stand may suffer.
A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.
Ecological Site Correlation Issues and Questions:
The Illinois NRCS state office staff has requested the Illinois map units that are unique to Illinois (e.g. Sylvan, Bold) have further field investigation. This would include the following ecological sites: F115BY003MO and F115BY043MO
The Deep Loess Backslope ecological sites (F115BY003MO, F115BY043MO) may have some overstory tree species differences related to map units on the Illinois side verses the map units on the Missouri side. Further field review is needed.
State 1
Reference
The historical reference state for this ecological site was old growth oak woodland. The woodland was dominated by white oak and black oak. Maximum tree age was likely 150 to 300 years. Periodic disturbances from fire, wind or ice as well as grazing by native large herbivores maintained the woodland structure and diverse ground flora species. Long disturbance-free periods allowed an increase in both the density of trees and the abundance of shade tolerant species.
Two community phases are recognized in the reference state, with shifts between phases based on disturbance frequency. Reference states are very rare today. Fire suppression has resulted in increased canopy density, which has affected the abundance and diversity of ground flora. Most, if not all, reference states are currently altered because of fire suppression, timber harvesting, domestic grazing or clearing and conversion to grassland or cropland.
Community 1.1
White Oak – Black Oak /Aromatic Sumac/Virginia Wild Rye – Elm Leaved Goldenrod
This phase has an old growth overstory that is dominated by white oak and black oak with hickory and post oak also present. This woodland community has a two-tiered structure with an open understory and a dense, diverse herbaceous ground flora.
Periodic disturbances including fire, ice and wind create canopy gaps, allowing white oak and black oak to successfully reproduce and remain in the canopy. It is likely that this phase burned at least once every 10 years.
Forest overstory. The Overstory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).
Forest understory. The Understory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).
Community 1.2
White Oak – Black Oak/Hickory/Virginia Wild Rye – Elm Leaved Goldenrod
Figure 9. A phased reference site at Hart Creek Conservation Area, near Hartsburg, Missouri. (Photo credit MDC)
This phase is similar to community phase 1.1 but oak and hickory understory densities are increasing due to longer periods of fire suppression. Displacement of some grasses and forbs may be occurring due to shading and competition from the increased densities of oak and hickory saplings in the understory.
State 2
Even-Age Managed Forest
An even-age managed forest can resemble the reference state. The primary difference is tree age, most being only 50 to 90 years old. Composition is also likely altered from the reference state depending on tree selection during harvests and disturbance activities. Without a regular 15 to 20 year harvest re-entry into these stands, these sites will slowly increase in more shade tolerant species such as sugar maple and white oak will become less dominant along with increases in structural diversity. This state can be restored to a reference state by modifying or eliminating timber harvests, extending rotations, incorporating selective thinning, and re-introducing prescribed fire.
Community 2.1
White Oak – Black Oak/Red Elm/ Tick Trefoil
This is an even-aged forest management phase. Logging activities are removing higher volumes of white oak causing a decrease in white oak in the canopy and an increase in northern red oak. Large group, shelterwood or clearcut harvests create a more uniform age class structure throughout the canopy layer while also opening up the understory and allowing more sunlight to reach the forest floor.
State 3
Uneven-Age Managed Forest
Due to selective single tree harvesting canopy densities have increased. Composition is likely altered from the Reference State depending on tree selection during harvest. This state will slowly increase in more shade tolerant species and white oak will become less dominant and is also denser because of fire suppression. Without periodic canopy disturbance, stem density and fire intolerant species, like hickory and maple will increase in abundance. This state can be restored to a reference state by modifying or eliminating timber harvests, extending rotations, incorporating selective thinning, and re-introducing prescribed fire.
Community 3.1
White Oak – Mockernut Hickory – Maple/Ironwood/ Woodland Brome
This is an uneven-aged forest management phase. Selective logging activities are removing higher volumes of white oak causing a decrease in white oak in the canopy and an increase in hickory and sugar maple. Densities numbers, especially more shade tolerant species, are increasing in the lower size-class levels.
State 4
Grassland
Conversion of other states to non-native cool season species such as tall fescue, orchard grass, and red clover has been common. Occasionally, these pastures will have scattered oaks. Long term uncontrolled grazing can cause significant soil erosion and compaction. A return to the reference state may be impossible, requiring a very long term series of management options. Two community phases are recognized in the grassland state, with shifts between phases based on types of management. Poor management will result in a shift to Community 4.2 that shows an increase in oak sprouting and increases in broomsedge densities. If oak sprouting is left unchecked and grazing is eliminated or reduced then over time this state will transition to an even-age managed woodland (livestock controlled and woodland management initiated) or to a high-graded/grazed woodland (continued grazing, high graded harvesting, and no woodland management).
Community 4.1
Tall Fescue – Orchard Grass - Red Clover
This phase is well-managed grassland, composed of non-native cool season grasses and legumes. Grazing and haying is occurring. The effects of long-term liming on soil pH, and calcium and magnesium content, is most evident in this phase. Studies show that these soils have higher pH and higher base status in soil horizons as much as two feet below the surface, relative to poorly managed grassland and to woodland communities (where liming is not practiced).
Community 4.2
Tall fescue - Broomsedge/Oak Sprouts
This phase is the result of over use, poor grassland and grazing management and lack of adequate nutrient application. Oak sprouts, oak saplings, and invasive species are increasing as a result of poor management.
State 5
High Graded/Grazed Woodland
States that were subjected to repeated, high-grading timber harvests and uncontrolled domestic grazing will transition to a High-Graded/Grazed Woodland State. This state exhibits an over-abundance of hickory and other less desirable tree species, and weedy understory species such as buckbrush, gooseberry, poison ivy and Virginia creeper. The existing vegetation offers little nutritional value for cattle, and excessive cattle stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff.
Community 5.1
Hickory - Oak / Buckbrush - Gooseberry/ Aster
This is the only phase associated with this state at this time. See the corresponding state narrative for details.