Natural Resources
Conservation Service
Ecological site F143XY401ME
Clay
Last updated: 10/07/2024
Accessed: 11/27/2024
General information
Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.
MLRA notes
Major Land Resource Area (MLRA): 143X–Northeastern Mountains
MLRA 143, known as the Northeastern Mountains, covers approximately 23 million acres of mountains, hills, and valleys in northern Maine, New Hampshire, Vermont, New York, and Massachusetts. The area is sparsely populated, with less than five percent of the land area developed for agriculture, residential, and urban development. About 90 percent of the area is forested, most of which is actively managed for timber. Elevations are mostly between 1,000 to 4,000 feet, with a few isolated peaks more than 5,000 feet above sea level. The present day mountains are but remnants of a much larger ancient range that has been eroding for approximately 500 million years. Bedrock consists of mostly very old metamorphic rock (gneiss, schist, slate, marble, quartzite, etc.) with younger intrusions of igneous rock (e.g. granite and granodiorite) from the Triassic and Cretaceous periods. MLRA 143 differs somewhat geologically from its neighboring MLRAs (142, 144A, 144B, 145, and 146), which have greater amounts of nutrient-rich sedimentary rock. Compared to MLRA 143, they are all lower in elevation, with longer growing seasons large areas that were once submerged by the ocean following glaciation.
The characteristic landforms and soils of northern New England were derived from the massive continental ice sheet that engulfed the region during North America’s most recent glaciation. Mighty glaciers, embedded with sediment and rock fragments, scoured bedrock and compacted mineral beds in a steady march south and east toward the Atlantic Ocean. The softer sedimentary rocks were pulverized into fine silts and clays under the immense weight of ice a mile thick, while the more resistant igneous and metamorphic rocks were sculpted into steep mountains and hills or plucked and dragged along the base of the glacier. With a warming climate, the ice retreated northward, depositing a thin layer of unsorted glacial till sediment atop the newly-exposed bedrock and compacted mineral beds. Deeper mounds of unsorted till formed small hills, kames, moraines and drumlins. Enormous chunks of ice detached as the glacier retreated, melting slowly in place and forming many kettle lakes and basins where water and fine sediments collect. Raging torrents of glacial meltwater dissected much of the barren landscape, entraining coarse and fine sediments, carving river valleys, and leaving well-sorted deposits of mostly sand and gravel along the watercourse. By 10,000 years ago the ice sheet had fully receded from MLRA 143. Silty floodplains developed along perennial rivers, many of which occupy the same channels that once gushed with sediment-rich glacial meltwater. Over time, wet basins accumulated fine sediment, some dried out, and still others became acidified by organic matter inputs from colonizing vegetation.
In terms of climate, MLRA 143 is distinguished from neighboring MLRAs by a shorter growing season and the occurrence of cryic soil temperature regimes at high elevations. The majority of MLRA 143 averages 32 to 44 inches of precipitation annually with a five to six month growing season and frigid winter temperatures. However, the higher elevations may receive up to double the annual precipitation of the lower elevations, and have a three to four month growing season with extremely cold winters. As the northernmost MLRA in the region with the coldest temperatures and shortest growing season, the Northeastern Mountains have less overall tree diversity, fewer pine and oak trees, and more abundant spruce and fir trees than neighboring MLRAs.
Classification relationships
This site occurs in Ecological Site Group 4 (Clay Forests) of MLRA 143 (The Northeastern Mountains), in the Northeastern Forage and Forest Region (Land Resource Region R).
The Northeastern Forage and Forest LRR includes all of Maine, New Hampshire, Vermont, Rhode Island, and Connecticut, as well as large portions of Massachusetts, New York, New Jersey, Pennsylvania, and Ohio. Its southern boundary marks the extent of the Wisconsin ice sheet, which engulfed the entire LRR as recently as 10,000 to 15,000 years ago. Erosional and depositional processes associated with glaciation created many of the topographic patterns that distinguish MLRAs within the Northeastern region. Harder granitic and metamorphic bedrock to the north were more resistant to glacial erosion, resulting in the relatively nutrient poor mountains of MLRA 143; whereas nutrient-rich sedimentary bedrock of MLRAs 139, 140, and 146 resulted in relatively flat, fertile landscapes ideal for cultivation. Other areas were depressed below sea-level by the sheer mass of the glacier, resulting in pockets of marine sediments which distinguish MLRAs 142, 144A, 144B, and 145.
Precipitation is sufficient to support productive forestland throughout the Northeastern region. Still, a latitudinal temperature gradient from mesic to frigid soil temperatures results in a general transition from central hardwoods and pine in the southern MLRAs to northern hardwoods and spruce-fir forests farther north (no true boreal forests exist in the region). Elevations are generally low throughout the Northeastern region, with the exception of MLRA 143 which has many high mountain ecosystems with cryic temperature regimes and alpine vegetation above the tree line.
Ecological site concept
This site occurs on the remnants of gently-sloping glacial lake beds, lake plains and terraces. Soils have clay textures and very few rock fragments throughout the profile. These are somewhat poorly- to moderately well-drained, with a seasonally-high water table within 26 inches of the soil surface. Tree species are diverse, typically with conifers such as red spruce, larch, and white pine more abundant than hardwoods, which include red maple and grey birch.
Associated sites
F143XY304ME |
Wet Flat The Wet Flat site may occur downslope from the Clay site as soil wetness increases toward the bottom of the watershed. |
---|
Table 1. Dominant plant species
Tree |
Not specified |
---|---|
Shrub |
Not specified |
Herbaceous |
Not specified |
Click on box and path labels to scroll to the respective text.