Ecological dynamics
Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.
The reference plant community is well developed woodland dominated by an overstory of white oak, black oak, and hickory species. The canopy is moderately tall (60 to 85 feet) but less dense (65 to 85 percent closure) than protected slopes and the understory is poorly developed with less structural diversity. Increased light from a more open canopy causes a diversity of ground flora species to flourish. In addition, proximity to shallow soil glades provides additional opportunity for increased light and species diversity.
Woodlands are distinguished from forest, by their relatively open understory, and the presence of sun-loving ground flora species. Characteristic plants in the ground flora can be used to gauge the restoration potential of a stand along with remnant open-grown old-age trees, and tree height growth.
Fire played an important role in the maintenance of these systems. It is likely that these ecological sites burned at least once every 5 to 10 years. These periodic fires kept woodlands open, removed the litter, and stimulated the growth and flowering of the grasses and forbs. During fire free intervals, woody understory species increased and the herbaceous understory diminished. The return of fire would open the woodlands up again and stimulate the abundant ground flora.
Loamy Exposed Backslope Woodlands were also subjected to occasional disturbances from wind and ice, as well as grazing by native large herbivores, such as bison, elk, and deer. Wind and ice would have periodically opened the canopy up by knocking over trees or breaking substantial branches off canopy trees. Grazing by native large herbivores would have effectively kept understory conditions more open, creating conditions more favorable to oak reproduction.
Today, these ecological sites have been cleared and converted to pasture or have undergone repeated timber harvest and domestic grazing. Most existing forested ecological sites have a younger (50 to 80 years) canopy layer whose species composition and quality has been altered by timber harvesting practices.
In the long term absence of fire, woody species, especially hickory, hornbeam and gooseberry encroach into these woodlands. Once established, these woody plants can quickly fill the existing understory increasing shade levels with a greatly diminished ground flora. Removal of the younger understory and the application of prescribed fire have proven to be effective restoration means.
Uncontrolled domestic grazing has also impacted these communities, further diminishing the diversity of native plants and introducing species that are tolerant of grazing, such as buckbrush, gooseberry, and Virginia creeper. Grazed sites also have a more open understory. In addition, soil compaction and soil erosion from grazing can be a problem and lower site productivity.
These ecological sites are moderately productive. Oak regeneration is typically problematic. Maintenance of the oak component will require disturbances such as prescribed fire and thinning that will encourage more sun adapted species and reduce shading effects.
Single tree selection timber harvests are common in this region and often results in removal of the most productive trees (high grading) in the stand leading to poorer quality timber and a shift in species composition away from more valuable oak species. Better planned single tree selection or the creation of group openings can help regenerate and maintain more desirable oak species and increase vigor on the residual trees.
Clearcutting also occurs and results in dense, even-aged stands dominated by oak. This may be most beneficial for existing stands whose composition has been highly altered by past management practices. However, without some thinning of the dense stands, and periodic fires, the ground flora diversity can be shaded out and diversity of the stand may suffer.
A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.
State 1
Reference
The historical reference state for this ecological site was old growth, oak woodland. The reference state was dominated by white oak, black oak, and hickory. Maximum tree age was likely 150 to 200 years. Periodic disturbances from fire, wind or ice maintained the woodland structure and diverse ground flora species. Long disturbance-free periods allowed an increase in both the density of trees and the abundance of shade tolerant species. Two community phases are recognized in the reference state, with shifts between phases based on disturbance frequency. Reference states are rare today. Many sites have been converted to grassland (State 4). Others have been subject to repeated, high-graded timber harvest coupled with uncontrolled domestic livestock grazing (State 5). Fire suppression has resulted in increased canopy density, which has affected the abundance and diversity of ground flora. Some former reference states have been managed as woodlands with fire (State 2) or without fire (State 3).
Community 1.1
White Oak – Mockernut Hickory/Aromatic Sumac/Sedge – Little Bluestem
Figure 9. Reference site in Graham Cave State Park, near Danville, Missouri
This phase has an overstory that is dominated by white oak, black oak, and hickory. This woodland community has a two-tiered structure with an open understory and a dense, diverse herbaceous ground flora.
Periodic disturbances including fire, ice and wind create canopy gaps, allowing oaks to successfully reproduce and remain in the canopy. It is likely that this phase burned at least once every 5 to 10 years.
Forest overstory. The Overstory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).
Forest understory. The Understory Species list is based on field surveys and commonly occurring species listed in Nelson (2010).
Community 1.2
White oak – Mockernut Hickory/Hickory Saplings – Aromatic Sumac/Sedge – Little Bluestem
This phase is similar to community phase 1.1 but oak and hickory understory densities are increasing due to longer periods of fire suppression. Displacement of some grasses and forbs may be occurring due to shading and competition from the increased densities of oak and hickory saplings in the understory.
State 2
Fire Excluded Managed Woodland
These stands will slowly increase in more shade tolerant species and white oak will become less dominant. These woodlands tend to be rather dense, with a sparse understory and ground flora. Thinning can increase overall tree vigor and improve understory diversity. However, in the absence of fire, the diversity and cover of the ground flora is still diminished. Without periodic disturbance, stem density and fire intolerant species, like sassafras and hickory, increase in abundance. Prescribed fire along with a more open canopy can transition this state to a Fire Managed Woodland state (State 3).
Community 2.1
Black Oak – White Oak – Hickory/Hazelnut/ Virginia Wildrye
This is the only phase associated with this state at this time. See the corresponding state narrative for details.
State 3
Fire Managed Woodland
Fire Managed Woodland state results from managing woodland communities (States 2) with prescribed fire and canopy thinning. This state can resemble the Reference State, but with younger maximum tree ages, more open canopies and lower ground flora diversity. Cessation of prescribed fire will allow transition to various managed woodland states.
Community 3.1
Oak – Hickory/Aromatic Sumac/ Woodland Brome – Little Bluestem
This is the only phase associated with this state at this time. See the corresponding state narrative for details.
State 4
Grassland
Conversion of woodlands to planted, non-native cool season grassland species such as tall fescue is common for this region. Steep slopes, surface fragments, low organic matter contents and soil acidity make grasslands harder to maintain in a healthy, productive state on this ecological site.
Two community phases are recognized in the grassland state, with shifts between phases based on types of management. Poor management will result in a shift to Community 4.2 that shows an increase in oak sprouting and increases in broomsedge densities.
Community 4.1
Tall Fescue - Red Clover
This phase is well-managed grassland, composed of non-native cool season grasses and legumes. Grazing and haying is occurring. The effects of long-term liming on soil pH, and calcium and magnesium content, is most evident in this phase. Studies show that these soils have higher pH and higher base status in soil horizons as much as two feet below the surface, relative to poorly managed grassland and to woodland communities where liming is not practiced.
Community 4.2
Tall fescue - Broomsedge/Oak Sprouts
This phase is the result of over use, poor grassland and grazing management and lack of adequate nutrient application. Oak sprouts, oak saplings, and invasive species are increasing as a result of poor management.
State 5
High-Graded, Grazed Woodland
States that were subjected to repeated, high-grading timber harvests and uncontrolled domestic grazing transitioned to a High-Graded, Grazed Woodland state. This state exhibits an over-abundance of hickory and other less desirable tree species, and weedy understory species such as buckbrush, gooseberry, poison ivy and Virginia creeper. The existing vegetation offers little nutritional value for cattle, and excessive cattle stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff.
Two common transitions from this state are woody clearing and conversion to State 4, grassland or removing livestock, limited harvesting, and allowing long term succession to occur to some other woodland state.
Community 5.1
Black Oak – Hickory / Serviceberry – Buckbrush / Sedge
This is the only phase associated with this state at this time. See the corresponding state narrative for details.