Natural Resources
Conservation Service
Ecological site F116BY010MO
Low-Base Chert Protected Backslope Woodland
Last updated: 10/06/2020
Accessed: 11/21/2024
General information
Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.
Figure 1. Mapped extent
Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.
MLRA notes
Major Land Resource Area (MLRA): 116B–Springfield Plain
The Springfield Plain is in the western part of the Ozark Uplift. It is primarily a smooth plateau with some dissection along streams. Elevation is about 1,000 feet in the north to over 1,700 feet in the east along the Burlington Escarpment adjacent to the Ozark Highlands. The underlying bedrock is mainly Mississippian-aged limestone, with areas of shale on lower slopes and structural benches, and intermittent Pennsylvanian-aged sandstone deposits on the plateau surface.
Classification relationships
Terrestrial Natural Community Type in Missouri (Nelson, 2010):
The reference state for this ecological site is most similar to a Dry-Mesic Chert Woodland.
Missouri Department of Conservation Forest and Woodland Communities (Missouri Department of Conservation, 2006):
The reference state for this ecological site is most similar to a Mixed Oak-Hickory Forest.
National Vegetation Classification System Vegetation Association (NatureServe, 2010):
The reference state for this ecological site is most similar to a Quercus alba - Quercus stellata - Quercus velutina / Schizachyrium scoparium Woodland (CEGL002150).
Geographic relationship to the Missouri Ecological Classification System (Nigh & Schroeder, 2002):
This ecological site occurs primarily within the following Land Type Associations:
Spring River Prairie/Savanna Dissected Plain
James River Oak Savanna/Woodland Low Hills
Finley River Oak Savanna/Woodland Low Hills
Seymour Highland Oak Savanna/Woodland Dissected Karst Plain
Ecological site concept
NOTE: This is a “provisional” Ecological Site Description (ESD) that is under development. It contains basic ecological information that can be used for conservation planning, application and land management. After additional information is collected, analyzed and reviewed, this ESD will be refined and published as “Approved”.
Low-base Chert Protected Backslope Woodlands occur on steep backslopes with northern and eastern aspects. In Missouri they are prevalent in the easternmost lobe of the Springfield Plain in the upper watersheds of the James River and Finley Creek. They are also prevalent on steep backslopes in the Spring River watershed in south-west Kansas and north-east Oklahoma. This site is mapped in complex with the Low-base Chert Exposed Backslope Woodland ecological site. Soils are typically very deep, acidic, and low in bases such as calcium, with an abundance of chert fragments. The reference plant community is woodland with an overstory dominated by white oak and black oak, and a ground flora of native grasses and forbs.
Associated sites
F116BY033MO |
Low-Base Chert Exposed Backslope Woodland Low-base Chert Exposed Backslope Woodlands are mapped in complex with this ecological site, on steep southern and western aspects. |
---|---|
F116BY004MO |
Low-Base Chert Upland Woodland Low-base Chert Upland Woodlands are upslope, on convex summit crests, and often contain a fragipan in the subsoil. |
F116BY017MO |
Gravelly/Loamy Upland Drainageway Woodland Gravelly/Loamy Upland Drainageway Woodlands are downslope. |
Similar sites
F116BY003MO |
Chert Upland Woodland Chert Upland Woodlands are very similar in composition except that they may be more dense and productive and are generally on more gentle slopes. |
---|
Table 1. Dominant plant species
Tree |
(1) Quercus alba |
---|---|
Shrub |
(1) Amelanchier arborea |
Herbaceous |
(1) Desmodium |
Physiographic features
This site is on upland backslopes with slopes of 15 to 50 percent. It is on protected aspects (north, northeast, and east), which receive significantly less solar radiation than the exposed aspects. The site receives runoff from upslope summit and shoulder sites, and generates runoff to adjacent, downslope ecological sites. This site does not flood.
The following figure (adapted from Aldrich, 1989) shows the typical landscape position of this ecological site, and landscape relationships with other ecological sites. Low-base Chert Protected Backslope Woodland sites are within the area labeled “2”, on lower backslopes with northerly to easterly exposures. Low-base Chert Exposed Backslope Woodland sites are on the corresponding southerly to westerly exposures. Low-base Chert Upland Woodland sites, labeled “1”, are typically upslope on crests and shoulders.
Figure 2. Landscape relationships for this ecological site.
Table 2. Representative physiographic features
Landforms |
(1)
Hill
(2) Hillslope |
---|---|
Flooding frequency | None |
Ponding frequency | None |
Slope | 15 – 50% |
Water table depth | 60 in |
Aspect | NW, N, NE, E |
Climatic features
The Springfield Plain has a continental type of climate marked by strong seasonality. In winter, dry-cold air masses, unchallenged by any topographic barriers, periodically swing south from the northern plains and Canada. If they invade reasonably humid air, snowfall and rainfall result. In summer, moist, warm air masses, equally unchallenged by topographic barriers, swing north from the Gulf of Mexico and can produce abundant amounts of rain, either by fronts or by convectional processes. In some summers, high pressure stagnates over the region, creating extended droughty periods. Spring and fall are transitional seasons when abrupt changes in temperature and precipitation may occur due to successive, fast-moving fronts separating contrasting air masses.
The Springfield Plain experiences few regional differences in climates. The average annual precipitation in this area is 41 to 45 inches. Snow falls nearly every winter, but the snow cover lasts for only a few days. The average annual temperature is about 55 to 58 degrees F. The lower temperatures occur at the higher elevations. Mean July maximum temperatures have a range of only one or two degrees across the area.
Mean annual precipitation varies along a west to east gradient. Seasonal climatic variations are more complex. Seasonality in precipitation is very pronounced due to strong continental influences. June precipitation, for example, averages three to four times greater than January precipitation. Most of the rainfall occurs as high-intensity, convective thunderstorms in summer.
During years when precipitation comes in a fairly normal manner, moisture is stored in the top layers of the soil during the winter and early spring, when evaporation and transpiration are low. During the summer months the loss of water by evaporation and transpiration is high, and if rainfall fails to occur at frequent intervals, drought will result. Drought directly affects plant and animal life by limiting water supplies, especially at times of high temperatures and high evaporation rates.
Superimposed upon the basic MLRA climatic patterns are local topographic influences that create topoclimatic, or microclimatic variations. In regions of appreciable relief, for example, air drainage at nighttime may produce temperatures several degrees lower in valley bottoms than on side slopes. At critical times during the year, this phenomenon may produce later spring or earlier fall freezes in valley bottoms. Deep sinkholes often have a microclimate significantly cooler, moister, and shadier than surrounding surfaces, a phenomenon that may result in a strikingly different ecology. Higher daytime temperatures of bare rock surfaces and higher reflectivity of these unvegetated surfaces may create distinctive environmental niches such as glades and cliffs. Slope orientation is an important topographic influence on climate. Summits and south-and-west-facing slopes are regularly warmer and drier than adjacent north- and-east-facing slopes. Finally, the climate within a canopied forest is measurably different from the climate of a more open grassland or savanna areas.
Source: University of Missouri Climate Center - http://climate.missouri.edu/climate.php; Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin, United States Department of Agriculture Handbook 296 - http://soils.usda.gov/survey/geography/mlra/
Table 3. Representative climatic features
Frost-free period (characteristic range) | 152-164 days |
---|---|
Freeze-free period (characteristic range) | 188-194 days |
Precipitation total (characteristic range) | 46-47 in |
Frost-free period (actual range) | 148-166 days |
Freeze-free period (actual range) | 187-195 days |
Precipitation total (actual range) | 46-47 in |
Frost-free period (average) | 158 days |
Freeze-free period (average) | 191 days |
Precipitation total (average) | 46 in |
Figure 3. Monthly precipitation range
Figure 4. Monthly minimum temperature range
Figure 5. Monthly maximum temperature range
Figure 6. Monthly average minimum and maximum temperature
Figure 7. Annual precipitation pattern
Figure 8. Annual average temperature pattern
Climate stations used
-
(1) CASSVILLE RANGER STN [USC00231383], Cassville, MO
-
(2) JOPLIN REGIONAL AIRPORT [USW00013987], Webb City, MO
-
(3) SPRINGFIELD [USW00013995], Springfield, MO
Influencing water features
Water features associated with this upland ecological site are influenced by karst landscapes throughout the area (see following graphic). Rainfall enters the groundwater system through the soil or by flowing into sinkholes and streams. Springs form where land drops low enough to meet underground water tables. Dissolution of carbonate rocks along fractures and faults has produced cave systems, sinkholes (closed and open), springs, and natural tunnels in the region. These sinkholes and losing streams can rapidly transfer water from upland recharge areas to spring outlets. The most common mechanism for groundwater recharge occurs by the relatively slow downward movement of water through soil and carbonate bedrock over a large area known as diffuse recharge, which maintains a high storage volume providing a consistent supply of water to springs. In addition to diffuse recharge, aquifers in karst terrain receive the relatively rapid transfer of water through sinkholes or losing streams connected by subsurface conduits. Surface water entering the aquifer in this fashion has very little contact with soil or rock and consequently the chemical nature of the water changes little in route. Discharge variability does not seem to be controlled by drainage area, but rather the conduit capacity of losing stream sections that can transport the entire volume of base-flow during dry periods in the year. High variability in base flow shows the impact of karst in the form of losing and gaining stream sections (Owen and Pavlowsky 2010).
The following graphic depicts the distribution of these karst-related features in the state of Missouri. Relative cave density per USGS 7.5" quadrangle is depicted by shades of red, deeper red signifying a larger number of caves in the quadrangle. Stretches of losing streams are shown in yellow. Known springs are shown as blue dots.
Figure 9. Image from Wikimedia Commons developed from the Missouri Department of Natural Resources, Division of Geology and Land Survey.
Soil features
These soils have acidic subsoils that are low in bases. Soils having low concentrations of calcium and containing few calcium bearing minerals along with increased levels of aluminum may also be vulnerable to base depletion by timber harvesting, plant uptake, and leaching. The soils were formed under woodland vegetation, and have thin, light-colored surface horizons. Parent material is slope alluvium over residuum weathered primarily from limestone. They have very gravelly or very cobbly silt loam surface horizons, and skeletal subsoils with high amounts of chert gravel and cobbles. They are not affected by seasonal wetness. Soil series associated with this site include Clarksville, Crackerneck, and Noark.
The accompanying picture of a roadcut in the Clarksville series shows a thin, light-colored surface horizon underlain by reddish loam with a high chert fragment content. Although rooting depth is high, as is shown in this picture, plants must be adapted to these low-base soils, which are high in soluble aluminum. Picture courtesy of John Preston, NRCS.
Figure 10. Clarksville series
Table 4. Representative soil features
Parent material |
(1)
Residuum
–
cherty limestone
(2) Slope alluvium |
---|---|
Surface texture |
(1) Very gravelly silt loam (2) Extremely gravelly silt loam |
Family particle size |
(1) Loamy |
Soil depth | 72 in |
Surface fragment cover <=3" | 40 – 70% |
Surface fragment cover >3" | 6% |
Available water capacity (0-40in) |
1 – 4 in |
Calcium carbonate equivalent (0-40in) |
Not specified |
Electrical conductivity (0-40in) |
2 mmhos/cm |
Sodium adsorption ratio (0-40in) |
Not specified |
Soil reaction (1:1 water) (0-40in) |
3.5 – 5.5 |
Subsurface fragment volume <=3" (Depth not specified) |
40 – 65% |
Subsurface fragment volume >3" (Depth not specified) |
30% |
Ecological dynamics
Information contained in this section was developed using historical data, professional experience, field reviews, and scientific studies. The information presented is representative of very complex vegetation communities. Key indicator plants, animals and ecological processes are described to help inform land management decisions. Plant communities will differ across the MLRA because of the naturally occurring variability in weather, soils, and aspect. The Reference Plant Community is not necessarily the management goal. The species lists are representative and are not botanical descriptions of all species occurring, or potentially occurring, on this site. They are not intended to cover every situation or the full range of conditions, species, and responses for the site.
The reference plant community is well developed woodland dominated by an overstory of white oak and black oak. It is very similar to Chert Upland Woodlands, except that it may be less dense and productive. The canopy is rather tall and more dense than exposed slopes and the understory is better developed with more structural diversity. Decreased light from the canopy and aspect causes the diversity of ground flora species to diminish. Woodlands are distinguished from forest, by their relatively open understory, and the presence of sun-loving ground flora species. Characteristic plants in the ground flora can be used to gauge the restoration potential of a stand along with remnant open-grown old-age trees, and tree height growth.
Fire played an important role in the maintenance of Low-base Chert Protected Backslope Woodlands. It is likely that these ecological sites burned at least once every 5 to 10 years, although with lower intensity than exposed slopes. These periodic fires kept woodlands open, removed the litter, and stimulated the growth and flowering of the grasses and forbs. During fire free intervals, woody understory species increased and the herbaceous understory diminished. The return of fire would open the woodlands up again and stimulate the abundant ground flora.
Low-base Chert Protected Backslope Woodlands were also subjected to occasional disturbances from wind and ice, as well as grazing by native large herbivores, such as bison, elk and white-tailed deer. Wind and ice would have periodically opened the canopy up by knocking over trees or breaking substantial branches off canopy trees. Grazing by native herbivores would have effectively kept understory conditions more open, creating conditions more favorable to oak reproduction and sun-loving ground flora species.
Today, these ecological sites have been cleared and converted to pasture or have undergone repeated timber harvest and domestic grazing. Most existing forested ecological sites have a younger (50-80 years) canopy layer whose species composition and quality has been altered by timber harvesting practices. In the long term absence of fire, woody species, especially hickory, encroach into these woodlands. Once established, these woody plants can quickly fill the existing understory increasing shade levels with a greatly diminished ground flora. Removal of the younger understory and the application of prescribed fire have proven to be effective restoration means.
Uncontrolled domestic grazing has also impacted these communities, further diminishing the diversity of native plants and introducing species that are tolerant of grazing, such as coralberry, gooseberry, and Virginia creeper. Grazed sites also have a more open understory. In addition, soil compaction and soil erosion from grazing can be a problem and lower site productivity.
Single tree selection timber harvests are common with this site and often results in removal of the most productive trees (high grading) in the stand leading to poorer quality timber and a shift in species composition away from more valuable oak species. Better planned single tree selection or the creation of group openings can help regenerate and maintain more desirable oak species and increase vigor on the residual trees.
Clearcutting also occurs and results in dense, even-aged stands dominated by oak. This may be most beneficial for existing stands whose composition has been highly altered by past management practices. However, without some thinning of the dense stands and the reintroduction of prescribed fire, the ground flora diversity can be shaded out and diversity of the stand may suffer.
A State and Transition Diagram follows. Detailed descriptions of each state, transition, plant community, and pathway follow the model. This model is based on available experimental research, field observations, professional consensus, and interpretations. It is likely to change as knowledge increases.
State and transition model
Figure 11. State and transition diagram for this ecological site
More interactive model formats are also available.
View Interactive Models
More interactive model formats are also available.
View Interactive Models
Click on state and transition labels to scroll to the respective text
Ecosystem states
States 1, 5 and 6 (additional transitions)
States 2 and 5 (additional transitions)
State 1 submodel, plant communities
State 2 submodel, plant communities
State 3 submodel, plant communities
State 4 submodel, plant communities
State 5 submodel, plant communities
State 6 submodel, plant communities
State 1
Reference State
The historical reference state for this ecological site was likely dominated by white oak, black oak and post oak. Scattered shortleaf pine may also have been present in the canopy. Periodic disturbances from fire, wind or ice maintained the woodland structure and diverse ground flora species. Long disturbance-free periods allowed an increase in both the density of trees and the abundance of shade tolerant species. Two community phases are recognized in the reference state, with shifts between phases based on disturbance frequency. Many sites have been converted to grassland (State 5). Others have been subject to repeated, high-graded timber harvest coupled with domestic livestock grazing (State 6). Fire suppression has resulted in increased canopy density, which has affected the abundance and diversity of ground flora. Many reference sites have been managed for timber harvest, resulting in either even-age (State 2) or uneven-age (State 3) woodlands.
Community 1.1
White Oak – Black Oak/Common Serviceberry/Ticktrefoil
Forest overstory. The Overstory Species list is based on field reconnaissance as well as commonly occurring species listed in Nelson 2010; names and symbols are from USDA PLANTS database.
Forest understory. The Understory Species list is based commonly occurring species listed in Nelson (2010).
Community 1.2
White Oak – Black Oak /Common Serviceberry – Hickory/Ticktrefoil
Pathway 1.1A
Community 1.1 to 1.2
This pathway is a gradual transition that results from extended, disturbance-free periods of roughly 10 years or longer.
Pathway 1.2A
Community 1.2 to 1.1
This pathway results from ecological disturbances such as fire, ice storms, or violent wind storms occurring on a periodic basis. Historically, native grazers such as bison provided disturbance events as well.
State 2
Even-Age Managed Woodland
These woodlands tend to be rather dense, with a sparse understory and ground flora. Thinning can increase overall tree vigor and improve understory diversity. However, in the absence of fire, the diversity and cover of the ground flora is still diminished. Continual timber management, depending on the practices used, will either maintain this state, or convert the site to uneven-age (State 3) woodlands. Prescribed fire without extensive timber harvest will, over time, cause a transition to Managed Oak Woodlands (State 4).
Dominant resource concerns
-
Plant structure and composition
-
Wildfire hazard from biomass accumulation
-
Terrestrial habitat for wildlife and invertebrates
Community 2.1
Black Oak-White Oak/Serviceberry/Tick Trefoil
State 3
Uneven-Age Managed Woodland
Composition is altered from the reference state depending on tree selection during harvest. In addition, without a regular 15 to 20 year harvest re-entry into these stands, they will slowly increase in more shade tolerant species and white oak will become less dominant.. Without periodic disturbance, stem density and fire intolerant species, like hickory, increase in abundance.
Dominant resource concerns
-
Plant productivity and health
-
Plant structure and composition
-
Terrestrial habitat for wildlife and invertebrates
Community 3.1
Black oak-Hickory/Serviceberry-Sassafras/Woodland Brome
State 4
Fire Managed Oak Woodland
The Fire Managed Oak Woodland state results from managing woodland communities on exposed aspects in States 2 or 3 with prescribed fire, over time. This state resembles the reference state, with younger maximum tree ages and lower ground flora diversity.
Dominant resource concerns
-
Plant structure and composition
Community 4.1
Mixed Oak
State 5
Grassland
Conversion of woodlands to non-native cool season grassland species such as tall fescue has been common. Low available water, abundant surface fragments, low organic matter contents and soil acidity make non-native grasslands difficult to maintain in a healthy, productive state on this ecological site. Occasionally, these pastures will have scattered patches of tall, mature pine. If grazing and pasture management is discontinued, oak sprouts will occur and the site will eventually transition to State 2. Forest stand improvement and tree planting practices can hasten this process.
Community 5.1
Tall Fescue - Red Clover
Dominant resource concerns
-
Plant structure and composition
-
Terrestrial habitat for wildlife and invertebrates
Community 5.2
Tall Fescue - Broomsedge/Oak Sprouts
Dominant resource concerns
-
Sheet and rill erosion
-
Ephemeral gully erosion
-
Nutrients transported to surface water
-
Plant productivity and health
-
Plant structure and composition
-
Plant pest pressure
-
Terrestrial habitat for wildlife and invertebrates
-
Feed and forage imbalance
Pathway P5.1A
Community 5.1 to 5.2
Over grazing; no fertilization
Pathway P5.2A
Community 5.2 to 5.1
Brush removal; grassland management; prescribed grazing
State 6
High-Graded / Grazed Woodland
Timbered sites subjected to repeated, high-graded timber harvests and domestic grazing transition to this State. This state exhibits an over-abundance of hickory and other less desirable tree species, and weedy understory species such as buckbrush, gooseberry, poison ivy and Virginia creeper. The vegetation offers little nutritional value for cattle, and excessive stocking damages tree boles, degrades understory species composition and results in soil compaction and accelerated erosion and runoff. Exclusion of cattle from sites in this state coupled with uneven-age management techniques will cause a transition to State 3 (Uneven-Age).
Dominant resource concerns
-
Ephemeral gully erosion
-
Nutrients transported to surface water
-
Plant productivity and health
-
Plant structure and composition
-
Plant pest pressure
-
Wildfire hazard from biomass accumulation
-
Terrestrial habitat for wildlife and invertebrates
Community 6.1
Black Oak-Hickory/Sassafras/Buckbrush
Transition T1A
State 1 to 2
This transition typically results from even-age forest management practices, such as clear-cut, seed tree or shelterwood harvest and fire suppression.
Transition T1B
State 1 to 3
This transition pathway generally requires forest management practices. Prescribed fire is is maintained. Mechanical thinning may be necessary in dense woodlands. Periodic timber harvests occur.
Transition T1C
State 1 to 4
This transition is the result of the systematic application of prescribed fire; forest stand improvement; harvesting.
Transition T1D
State 1 to 5
This transition is the result of clearing the woodland community and planting pasture species. Soil erosion can be extensive in this process, along with loss of organic matter. Liming and fertilizing associated with pasture management typically raises the soil pH and increases the cation concentration (such as calcium and magnesium) of the upper soil horizons.
Transition T1E
State 1 to 6
This transition is the result of poorly planned timber harvest techniques such as high-grading, accompanied by unmanaged livestock grazing. Soil erosion and compaction often result from grazing after the understory has been damaged.
Restoration pathway R1C
State 2 to 1
This restoration pathway generally requires forest management practices with extended rotations that allow mature trees to exceed ages of about 100 years. Prescribed fire is part of the restoration process. Mechanical thinning may be necessary in dense woodlands.
Transition T2A
State 2 to 3
This transition typically results from uneven-age timber management practices, such as single tree or group selection harvest.
Transition T2B
State 2 to 4
This transition is the result of the systematic application of prescribed fire; forest stand improvement; harvesting.
Restoration pathway R1B
State 3 to 1
This restoration pathway generally requires forest management practices with extended rotations that allow mature trees to exceed ages of about 100 years. Prescribed fire is part of the restoration process. Mechanical thinning may be necessary in dense woodlands.
Transition T3A
State 3 to 2
This transition typically results from even-age forest management practices, such as clear-cut, seed tree or shelterwood harvest.
Transition T3B
State 3 to 4
This transition is the result of the systematic application of prescribed fire. Mechanical thinning may also be used; forest stand improvement; harvesting
Restoration pathway R1A
State 4 to 1
This restoration pathway generally requires forest management practices with extended rotations that allow mature trees to exceed ages of about 100 years. Prescribed fire is part of the restoration process. Mechanical thinning may be necessary in dense woodlands.
Transition T4A
State 4 to 2
This transition typically results from even-age forest management practices, such as clear-cut, seed tree or shelterwood harvest and fire suppression.
Transition T4B
State 4 to 3
This transition typically results from uneven-age timber management practices, such as single tree or group selection harvest; fire suppression; harvesting
Transition T5A
State 5 to 2
This transition results from the cessation of grazing and associated pasture management such as mowing and brush-hogging. Herbicide application, tree planting and forest stand improvement techniques can speed up this otherwise very lengthy transition.
Transition T6B
State 6 to 3
This transition results from the cessation of grazing and associated pasture management such as mowing and brush-hogging. Herbicide application, tree planting and forest stand improvement techniques can speed up this otherwise very lengthy transition.
Transition T6A
State 6 to 5
This transition is the result of clearing the woodland communities and planting grassland species. Soil erosion can be extensive in this process, along with loss of organic matter. Liming and fertilizing associated with pasture management typically raises the soil pH and increases the cation concentration (such as calcium and magnesium) of the upper soil horizons.
Additional community tables
Table 5. Community 1.1 forest overstory composition
Common name | Symbol | Scientific name | Nativity | Height (ft) | Canopy cover (%) | Diameter (in) | Basal area (square ft/acre) |
---|---|---|---|---|---|---|---|
Tree
|
|||||||
white oak | QUAL | Quercus alba | Native | – | 20–50 | – | – |
black oak | QUVE | Quercus velutina | Native | – | 20–50 | – | – |
post oak | QUST | Quercus stellata | Native | – | 5–10 | – | – |
shagbark hickory | CAOV2 | Carya ovata | Native | – | 5–10 | – | – |
black hickory | CATE9 | Carya texana | Native | – | 5–10 | – | – |
mockernut hickory | CATO6 | Carya tomentosa | Native | – | 5–10 | – | – |
shortleaf pine | PIEC2 | Pinus echinata | Native | – | 0–10 | – | – |
Table 6. Community 1.1 forest understory composition
Common name | Symbol | Scientific name | Nativity | Height (ft) | Canopy cover (%) | |
---|---|---|---|---|---|---|
Grass/grass-like (Graminoids)
|
||||||
little bluestem | SCSC | Schizachyrium scoparium | Native | – | 5–20 | |
hairy woodland brome | BRPU6 | Bromus pubescens | Native | – | 5–20 | |
poverty oatgrass | DASP2 | Danthonia spicata | Native | – | 5–20 | |
oval-leaf sedge | CACE | Carex cephalophora | Native | – | 5–20 | |
fuzzy wuzzy sedge | CAHI6 | Carex hirsutella | Native | – | 5–20 | |
Virginia wildrye | ELVI3 | Elymus virginicus | Native | – | 5–20 | |
eastern star sedge | CARA8 | Carex radiata | Native | – | 5–20 | |
Forb/Herb
|
||||||
arrowleaf violet | VISA2 | Viola sagittata | Native | – | 5–20 | |
calico aster | SYLA4 | Symphyotrichum lateriflorum | Native | – | 5–20 | |
stiff tickseed | COPA10 | Coreopsis palmata | Native | – | 5–20 | |
largeflower yellow false foxglove | AUGR | Aureolaria grandiflora | Native | – | 5–20 | |
American ipecac | GIST5 | Gillenia stipulata | Native | – | 5–20 | |
hairy sunflower | HEHI2 | Helianthus hirsutus | Native | – | 5–20 | |
feathery false lily of the valley | MARA7 | Maianthemum racemosum | Native | – | 5–20 | |
eastern beebalm | MOBR2 | Monarda bradburiana | Native | – | 5–20 | |
bristly buttercup | RAHI | Ranunculus hispidus | Native | – | 5–20 | |
fire pink | SIVI4 | Silene virginica | Native | – | 5–20 | |
fourleaf milkweed | ASQU | Asclepias quadrifolia | Native | – | 5–20 | |
pointedleaf ticktrefoil | DEGL5 | Desmodium glutinosum | Native | – | 5–20 | |
smooth small-leaf ticktrefoil | DEMA2 | Desmodium marilandicum | Native | – | 5–20 | |
nakedflower ticktrefoil | DENU4 | Desmodium nudiflorum | Native | – | 5–20 | |
Arkansas bedstraw | GAAR4 | Galium arkansanum | Native | – | 5–20 | |
spotted geranium | GEMA | Geranium maculatum | Native | – | 5–20 | |
elmleaf goldenrod | SOUL2 | Solidago ulmifolia | Native | – | 5–20 | |
manyray aster | SYAN2 | Symphyotrichum anomalum | Native | – | 5–20 | |
rue anemone | THTH2 | Thalictrum thalictroides | Native | – | 5–20 | |
Shrub/Subshrub
|
||||||
deerberry | VAST | Vaccinium stamineum | Native | – | 5–20 | |
fragrant sumac | RHAR4 | Rhus aromatica | Native | – | 5–20 | |
Blue Ridge blueberry | VAPA4 | Vaccinium pallidum | Native | – | 5–20 | |
Tree
|
||||||
flowering dogwood | COFL2 | Cornus florida | Native | – | 5–20 | |
leadplant | AMCA6 | Amorpha canescens | Native | – | 5–20 |
Interpretations
Animal community
Wildlife (MDC 2006):
Wild turkey, white-tailed deer, and eastern gray squirrel depend on hard and soft mast food sources and are typical upland game species of this type.
Oaks provide abundant hard mast; scattered shrubs provide soft mast; native legumes provide high-quality wildlife food.
Sedges and native cool-season grasses provide green browse.
Post-burn areas can provide temporary bare-ground – herbaceous cover habitat important for turkey poults and quail chicks.
Bird species associated with early-successional woodlands are Northern Bobwhite, Prairie Warbler, Field Sparrow, Blue-winged Warbler, Yellow-breasted Chat, and Brown Thrasher.
Bird species associated with mid- to late successional woodlands are Indigo Bunting, Red-headed Woodpecker, Eastern Bluebird, Northern Bobwhite, Summer Tanager, Eastern Wood-Pewee, Whip-poor-will, Chuck-will’s widow, Red-eyed Vireo, Rose-breasted Grosbeak, Yellow-billed Cuckoo, and Broad-winged Hawk.
Reptile and amphibian species associated with woodlands include ornate box turtle, northern fence lizard, five-lined skink, broad-headed skink, six-lined racerunner, flat-headed snake, rough earth snake, and timber rattlesnake.
Other information
Forestry (NRCS 2002; 2014):
Management: Field measured site index values average 64 for white oak, 65 for black oak and 70 for shortleaf pine. Timber management opportunities are generally good. Create group openings of at least 2 acres. Large clearcuts should be minimized if possible to reduce impacts on wildlife and aesthetics. Uneven-aged management using single tree selection or group selection cuttings of ½ to 1 acre are other options that can be used if clear cutting is not desired or warranted. Using prescribed fire as a management tool could have a negative impact on timber quality, may not be fitting, or should be used with caution on a particular site if timber management is the primary objective.
Limitations: Large amounts of coarse fragments throughout profile; bedrock may be within 60 inches. Surface stones and rocks are problems for efficient and safe equipment operation and will make equipment use somewhat difficult. Disturbing the surface excessively in harvesting operations and building roads increases soil losses, which leaves a greater amount of coarse fragments on the surface. Hand planting or direct seeding may be necessary. Seedling mortality due to low available water capacity may be high. Mulching or providing shade can improve seedling survival. Mechanical tree planting will be limited. Erosion is a hazard when slopes exceed 15 percent. On steep slopes greater than 35 percent, traction problems increase and equipment use is not recommended
Supporting information
Inventory data references
Potential Reference Sites: Low-Base Chert Protected Backslope Woodland
Plot COHOCA_JK02 – Noark soil
Located in Compton Hollow CA, Webster County, MO
Latitude: 37.239758
Longitude: -92.995287
Other references
Aldrich, Max W. 1989. Soil Survey of Newton County, Missouri. U.S. Dept. of Agric. Soil Conservation Service.
Anderson, R.C. 1990. The historic role of fire in North American grasslands. Pp. 8-18 in S.L. Collins and L.L. Wallace (eds.). Fire in North American tallgrass prairies. University of Oklahoma Press, Norman.
Batek, M.J., A.J. Rebertus, W.A. Schroeder, T.L. Haithcoat, E. Compas, and R.P. Guyette. 1999. Reconstruction of early nineteenth-century vegetation and fire regimes in the Missouri Ozarks. Journal of Biogeography 26:397-412.
Gregg, Kenneth L., and Jeffrey A. Woodward. 2006. Soil Survey of McDonald County, Missouri. U.S. Dept. of Agric. Natural Resources Conservation Service.
Harlan, J.D., T.A. Nigh and W.A. Schroeder. 2001. The Missouri original General Land Office survey notes project. University of Missouri, Columbia.
Ladd, D. 1991. Reexamination of the role of fire in Missouri oak woodlands. Pp. 67-80 in G.V. Brown, James K.; Smith, Jane Kapler, eds. 2000. Wildland fire in ecosystems: effects of fire on flora. Gen. Tech. Rep. RMRS-GTR-42-vol. 2. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 257 p.
Missouri Department of Conservation. 2010. Missouri Forest and Woodland Community Profiles. Missouri Department of Conservation, Jefferson City, Missouri.
Natural Resources Conservation Service. 2002. Woodland Suitability Groups. Missouri FOTG, Section II, Soil Interpretations and Reports. 30 pgs.
Natural Resources Conservation Service. Site Index Reports. Accessed May 2014. https://esi.sc.egov.usda.gov/ESI_Forestland/pgFSWelcome.aspx
NatureServe. 2010. Vegetation Associations of Missouri (revised). NatureServe, St. Paul, Minnesota.
Nelson, Paul W. 2010. The Terrestrial Natural Communities of Missouri. Missouri Department of Conservation, Jefferson City, Missouri.
Nigh, Timothy A., and Walter A. Schroeder. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation, Jefferson City, Missouri.
Owen, Marc R. and Robert T. Pavlowsky. 2010. Baseflow hydrology and water quality of an Ozarks spring and associated recharge area, southern Missouri, USA. Environ Earth Sci (2011) 64:169–183.
Schoolcraft, H.R. 1821. Journal of a tour into the interior of Missouri and Arkansas from Potosi, or Mine a Burton, in Missouri territory, in a southwest direction, toward the Rocky Mountains: performed in the years 1818 and 1819. Richard Phillips and Company, London.
United States Department of Agriculture – Natural Resource Conservation Service (USDA-NRCS). 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. 682 pgs.
Contributors
Doug Wallace
Fred Young
Approval
Nels Barrett, 10/06/2020
Acknowledgments
Missouri Department of Conservation and Missouri Department of Natural Resources personnel provided significant and helpful field and technical support in the development of this ecological site.
Rangeland health reference sheet
Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.
Author(s)/participant(s) | |
---|---|
Contact for lead author | |
Date | 09/17/2020 |
Approved by | Nels Barrett |
Approval date | |
Composition (Indicators 10 and 12) based on | Annual Production |
Indicators
-
Number and extent of rills:
-
Presence of water flow patterns:
-
Number and height of erosional pedestals or terracettes:
-
Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
-
Number of gullies and erosion associated with gullies:
-
Extent of wind scoured, blowouts and/or depositional areas:
-
Amount of litter movement (describe size and distance expected to travel):
-
Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
-
Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
-
Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
-
Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
-
Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
Dominant:
Sub-dominant:
Other:
Additional:
-
Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
-
Average percent litter cover (%) and depth ( in):
-
Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
-
Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
-
Perennial plant reproductive capability:
Print Options
Sections
Font
Other
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.
Click on box and path labels to scroll to the respective text.